Skip to main content
Log in

Finite element analysis of axial splits in composite Iosipescu specimens

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper, a finite element analysis of skew-symmetric splits along the fiber direction in unidirectional composite Iosipescu specimens is performed. The energy release rates G I, G II, and G total associated with axial splits in cracked Iosipescu specimens under external biaxial loading conditions are computed by four different numerical schemes: displacement correlation, displacement extrapolation, J-integral, and the modified crack closure integral. Using beam theory analysis, an analytical solution for the energy release rates is also proposed. Axial splits in Iosipescu specimen propagate under mixed mode conditions, with G I and G II varying with the crack length a. For short and medium crack lengths G I>G II, while for long cracks, G II is dominant. The energy release rates G I, G II, and G total are strongly dependent on the biaxial type of loading. The G-estimates obtained by the modified crack closure integral schemes are found to be the most accurate among all the numerical schemes chosen in this study. In the analyses of axial splits in composite Iosipescu specimens, the displacement correlation and extrapolation techniques yielded poor results. For long crack lengths, the analytical results from the beam theory analysis are in fair agreement with those from the modified crack closure integral schemes; however, for short and medium crack lengths, there is a significant difference between the analytical and numerical results. In composite Iosipescu specimens, stable crack propagation (mode I dominant) can be achieved by increasing the tension/shear ratio in the external loading boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Henshell and K.G. Shaw, International Journal for Numerical Methods in Engineering 9 (1975) 495–507.

    Google Scholar 

  2. R.S. Barsoum, International Journal for Numerical Methods in Engineering 10 (1976) 25–37.

    Google Scholar 

  3. S.K. Chan, I.S. Tuba and W.K. Wilson Engineering Fracture Mechanics 2 (1970) 1–17.

    Article  Google Scholar 

  4. I.S. Raju and J.C. Newman Jr., NASA-TN-D8414 (1977).

  5. D.M. Parks, International Journal of Fracture 10 (1974) 487–502.

    Google Scholar 

  6. T.K. Hellen, International Journal for Numerical Methods in Engineering 9 (1975) 187–207.

    Google Scholar 

  7. D.M. Parks, Computer Methods in Applied Mechanics and Engineering 12 (1977) 353–364.

    Article  Google Scholar 

  8. J.R. Rice, Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  9. E.F. Rybicki and M.F. Kanninen, Engineering Fracture Mechanics 9 (1977) 931–938.

    Article  Google Scholar 

  10. E.F. Rybicki, D.W. Schmueser and J. Fox, Journal of Composite Materials 11 (October 1977) 470–487.

    Google Scholar 

  11. T.K. O'Brien, in Damage in Composite Materials, ASTM STP 775, K.L. Reifsnider (ed.), American Society for Testing and Materials (1982) 140–167.

  12. F.G. Buchholz, in Accuracy Reliability and Training in FEM-Technology, J. Robinson (ed.), Robinson and Associates, Dorset (1984) 650–659.

    Google Scholar 

  13. T. Krishnamurthy, T.S. Ramamurthy, K. Vijayakumar and B. Dattaguru, in Proceedings International Conference on Finite Elements in Computational Mechanics, T. Kant (ed.), Pergamon Press, Oxford (1985) 891–900.

    Google Scholar 

  14. F.G. Buchholz and M.F. Kanninen, ‘Fracture analysis by the improved and generalized modified crack closure integral method’, Paper presented at 1st World Congress on Computational Mechanics, Austin, Texas (1986).

  15. I.S. Raju, Engineering Fracture Mechanics 28 (1987) 251–274.

    Article  Google Scholar 

  16. S.N. Atluri, A.S. Kobayashi and M. Nakagaki, in Fracture Mechanics of Composites, ASTM STP 593 (1975).

  17. R.O. Forschi and J.D. Barret, International Journal for Numerical Methods in Engineering 10 (1976) 1281–1287.

    Google Scholar 

  18. G. Heppler and J.S. Hansen, International Journal for Numerical Methods in Engineering 17 (1981) 445–464.

    Google Scholar 

  19. J.D. Whitcomb, Journal of Composite Materials 15 (1981) 403–426.

    Google Scholar 

  20. F.G. Buchholz, M. Kumosa and M. Burger, in Conference Proceeding 10, Reutlinger Arbeitstagung Finite Elemente in der Praxis, Resutlinger, Federal Republic of Germany (April, 1989) 353–376.

  21. F.G. Buchholz, M. Burger, M. Kumosa and H. Eggers, in Fifth International Conference on Numerical Methods in Fracture Mechanics, Freiburg, Federal Republic of Germany (1990).

  22. F.G. Buchholz, N. Schulte-Frankelfeld and B. Meiners, in Proceedings 6th International Conference on Composite Materials, 3, Elsevier Applied Sciences Publications, London (1987) 3.417–3.428.

    Google Scholar 

  23. V.E. Saouma and E.S. Sikiotis, Engineering Fracture Mechanics 25, no. 1 (1986) 115–121.

    Google Scholar 

  24. T.J. Boone, P.A. Wawrzynek and A.R. Ingraffea, Engineering Fracture Mechanics 26, no. 2 (1987) 185–201.

    Article  Google Scholar 

  25. C.F. Shih, H.G. deLorenzi and M.D. German, International Journal of Fracture 12, no. 4 (1976) 647–651.

    Google Scholar 

  26. N. Iosipescu, Journal of Materials 2, no. 1 (1967) 537–566.

    Google Scholar 

  27. D.E. Walrath and D.F. Adams, ‘Analysis of the stress state in an Iosipescu shear test specimen,’ Report UWME-DR-301–102–1, Department of Mechanical Engineering, University of Wyoming, Laramie, Wyoming, June 1983.

    Google Scholar 

  28. D.E. Walrath and D.F. Adams, ‘Verification and application of the Iosipescu shear test method,’ Report UWME-DR-401–103–1, Department of Mechanical Engineering, University of Wyoming, Laramie, Wyoming, June 1984.

    Google Scholar 

  29. S. Lee and M. Munro, Composites 17 (January 1986) 11–22.

    Article  Google Scholar 

  30. J.A. Barnes, M. Kumosa and D. Hull, Composites Science and Technology 28 (1987) 251–268.

    Article  Google Scholar 

  31. M. Kumosa and D. Hull, International Journal of Fracture 35 (1987) 83–102.

    Article  Google Scholar 

  32. W.R. Broughton, Ph.D. thesis, University of Cambridge, 1989.

  33. W.R. Broughton, M. Kumosa and D. Hull, Composites Science and Technology 38 (1990) 299–325.

    Article  Google Scholar 

  34. A. Bansal and M. Kumosa, Experimental Mechanics (1992), submitted.

  35. M. Arcan, Z. Hashin and A. Voloshin, Experimental Mechanics 18 (1978) 141–146.

    Google Scholar 

  36. A. Voloshin and M. Arcan, Experimental Mechanics (August 1980) 280–284.

  37. N. Sukumar and M. Kumosa, International Journal of Fracture 58 (1992) 177–192.

    Article  Google Scholar 

  38. N. Sukumar and M. Kumosa, International Journal of Fracture 58 (1992) R45-R49.

    Article  Google Scholar 

  39. S.S. Wang, D.P. Goetz and H.T. Corten, International Journal of Fracture 26 (1984) 215–227.

    Google Scholar 

  40. G.J. DeSalvo and R.W. Gorman, in Ansys Engineering Analysis System; User's Manual, vol. 1, Swanson Analysis System Inc., May 1, 1989.

  41. S. Parhizgar, L.W. Zachary and C.T. Sun, International Journal of Fracture 20 (1982) 247–256.

    Google Scholar 

  42. A.C. Kaya and F. Erdogan, International Journal of Fracture 16, no. 2 (1980) 171–190.

    Article  Google Scholar 

  43. M.L. Williams, Journal of Applied Mechanics 24 (1957) 109–114.

    Google Scholar 

  44. G.C. Sih, P.C. Paris and G.R. Irwin, International Journal of Fracture 1 (1965) 189–203.

    Article  Google Scholar 

  45. D. Hull, An Introduction to Composite Materials, Cambridge University Press, Cambridge (1981)

    Google Scholar 

  46. T.S. Ramamurthy, T. Krishnamurthy, K. Badri Narayana, K. Vijayakumar and B. Dattaguru, in Mechanics Research Communications 13 (1986) 179–186.

  47. R. Sethuraman and S.K. Maiti, Engineering Fracture Mechanic 30, no. 2 (1988) 227–231.

    Article  Google Scholar 

  48. K. Badrinarayana, B. Dattaguru, T.S. Ramamurthy and K. Vijayakumar, Engineering Fracture Mechanics 36 (1990) 945–955.

    Article  Google Scholar 

  49. J.G. Williams, International Journal of Fracture 36 (1988) 101–119.

    Article  Google Scholar 

  50. J.G. Williams, Composite Science and Technology 35 (1989) 367–376.

    Article  Google Scholar 

  51. S. Hashemi, A.J. Kinloch and J.G. Williams, in Proceedings of Royal Society A, 42 (1990) 173–199.

  52. J.G. Williams, Private communications, 1989.

  53. N. Sukumar, ‘Finite element analysis of mixed mode fracture and failure in Iosipescu specimens,’ M.S. thesis, Oregon Graduate Institute of Science & Technology, October 1992.

  54. L. Banks-Sills and Y. Bortman International Journal of Fracture 25 (1984) 169–180.

    Google Scholar 

  55. L. Banks-Sills and D. Sherman, International Journal of Fracture 32 (1986) 127–140.

    Article  Google Scholar 

  56. A.J. Russell and K.N. Street, in ASTM STP 976, American Society for Testing and Materials, Philadelphia (1985) 349–370.

    Google Scholar 

  57. E.M. Wu, Journal of Applied Mechanics 34, no. 4 (December 1967) 967–974.

    Google Scholar 

  58. R.A. Jurf and R.B. Pipes, Journal of Composite Materials 16 (1982) 386–394.

    Google Scholar 

  59. H.T. Hahn, Composites Technology Review 5, no. 1 (1983) 26–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukumar, N., Kumosa, M. Finite element analysis of axial splits in composite Iosipescu specimens. Int J Fract 62, 55–85 (1993). https://doi.org/10.1007/BF00032525

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00032525

Keywords

Navigation