Skip to main content
Log in

Analysis of antisymmetric cross-ply laminates using high-order shear deformation theories: a meshless approach

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

For many years finite element method (FEM) was the chosen numerical method for the analysis of composite structures. However, in the last 20 years, the scientific community has witnessed the birth and development of several meshless methods, which are more flexible and equally accurate numerical methods. The meshless method used in this work is the natural neighbour radial point interpolation method (NNRPIM). In order to discretize the problem domain, the NNRPIM only requires an unstructured nodal distribution. Then, using the Voronoï mathematical concept, it enforces the nodal connectivity and constructs the background integration mesh. The NNRPIM shape functions are constructed using the radial point interpolation technique. In this work, the displacement field of composite laminated plates is defined by high-order shear deformation theories. In the end, several antisymmetric cross-ply laminates were analysed and the NNRPIM solutions were compared with the literature. The obtained results show the efficiency and accuracy of the NNRPIM formulation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Belinha, J.: Meshless Methods in Biomechanics: Bone Tissue Remodelling Analysis. Springer International Publishing, Porto (2014)

    MATH  Google Scholar 

  2. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput. Math. Appl. 19, 127–145 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Krysl, P., Belytschko, T.: Analysis of thin plates by the element-free Galerkin method. Comput. Mech. 17, 26–35 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Meth. Engng. 37, 229–256 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Meng, Z.J., Cheng, H., Ma, L.D., et al.: The dimension split element-free Galerkin method for three-dimensional potential problems. Acta. Mech. Sin. 34, 462–474 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    MATH  Google Scholar 

  8. Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Konda, D.H., Santiago, J.A.F., Telles, J.C.F., et al.: A meshless Reissner plate bending procedure using local radial point interpolation with an efficient integration scheme. Eng. Anal. Bound. Elem. 99, 46–59 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Moarrefzadeh, A., Shahrooi, S., Jalali Azizpour, M.: Predicting fatigue crack propagation in residual stress field due to welding by meshless local Petrov-Galerkin method. J. Manuf. Process. 45, 379–391 (2019)

    Google Scholar 

  11. Liu, W.K., Jun, S., Li, S., et al.: Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Methods Eng. 38, 1655–1679 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Liu, Z., Wei, G., Wang, Z.: Numerical solution of functionally graded materials based on radial basis reproducing kernel particle method. Eng. Anal. Bound. Elem. 111, 32–43 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Oñate, E., Idelsohn, S., Zienkiewicz, O.C., et al.: A finite point method in computational mechanics: applications to convective transport and fluid flow. Int. J. Numer. Methods Eng. 39, 3839–3866 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Ferreira, A.J.M., Roque, C.M.C., Martins, P.A.L.S.: Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method. Compos. Part B Eng. 34, 627–636 (2003)

    Google Scholar 

  15. Bitaraf, M., Mohammadi, S.: Large deflection analysis of flexible plates by the meshless finite point method. Thin-Walled Struct. 48, 200–214 (2010)

    Google Scholar 

  16. Liu, G.R., Gu, Y.T.: A point interpolation method for two-dimensional solids. Int. J. Numer. Methods Eng. 50, 937–951 (2001)

    MATH  Google Scholar 

  17. Liu, G.R.: A point assembly method for stress analysis for two-dimensional solids. Int. J. Solids Struct. 39, 261–276 (2001)

    Google Scholar 

  18. Wang, J.G., Liu, G.R.: A point interpolation meshless method based on radial basis functions. Int. J. Numer. Methods Eng. 54, 1623–1648 (2002)

    MATH  Google Scholar 

  19. van Do, V.N., Tran, M.T., Lee, C.H.: Nonlinear thermal buckling analyses of functionally graded plates by a mesh-free radial point interpolation method. Eng. Anal. Bound. Elem. 87, 153–164 (2018)

    MathSciNet  MATH  Google Scholar 

  20. van Do, V.N., Lee, C.H.: Bending analyses of FG-CNTRC plates using the modified mesh-free radial point interpolation method based on the higher-order shear deformation theory. Compos. Struct. 168, 485–497 (2017)

    Google Scholar 

  21. Phan-Dao, H.H., Thai, C.H., Lee, J., et al.: Analysis of laminated composite and sandwich plate structures using generalized layerwise HSDT and improved meshfree radial point interpolation method. Aerosp. Sci. Technol. 58, 641–660 (2016)

    Google Scholar 

  22. Li, Y., Liu, G.R.: An element-free smoothed radial point interpolation method (EFS-RPIM) for 2D and 3D solid mechanics problems. Comput. Math. Appl. 77, 441–465 (2019)

    MathSciNet  MATH  Google Scholar 

  23. van Do, V.N., Lee, C.H.: Nonlinear analyses of FGM plates in bending by using a modified radial point interpolation mesh-free method. Appl. Math. Model. 57, 1–20 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Ramalho, L.D.C., Belinha, J., Campilho, R.D.S.G.: The numerical simulation of crack propagation using radial point interpolation meshless methods. Eng. Anal. Bound. Elem. 109, 187–198 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Farahani, B.V., Belinha, J., Amaral, R., et al.: Extending radial point interpolating meshless methods to the elasto-plastic analysis of aluminium alloys. Eng. Anal. Bound. Elem. 100, 101–117 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Nguyen, T.N., Thai, C.H., Nguyen-Xuan, H.: On the general framework of high order shear deformation theories for laminated composite plate structures: a novel unified approach. Int. J. Mech. Sci. 110, 242–255 (2016)

    Google Scholar 

  27. Reissner, E.: On the theory of transverse bending of elastic plates. Int. J. Solids Struct. 12, 545–554 (1976)

    MathSciNet  MATH  Google Scholar 

  28. Reissner, E.: A consistent treatment of transverse shear deformations in laminated anisotropic plates. AIAA J. 10, 716–718 (1972)

    Google Scholar 

  29. Reissner, E.: The effect of transverse shear deformations on the bending of elastic plates. J. Appl. Mech. 12, A69–A77 (1945)

    MathSciNet  MATH  Google Scholar 

  30. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  31. van Do, T.V., Bui, T.Q., Yu, T.T., et al.: Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment. J. Comput. Sci. 21, 164–181 (2017)

    MathSciNet  Google Scholar 

  32. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  33. Shi, G.: A new simple third-order shear deformation theory of plates. Int. J. Solids Struct. 44, 4399–4417 (2007)

    MATH  Google Scholar 

  34. Ambartsumian, S.A.: On the theory of bending of anisotropic plates and shallow shells. J. Appl. Math. Mech. 24, 500–514 (1960)

    MathSciNet  Google Scholar 

  35. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29, 901–916 (1991)

    MATH  Google Scholar 

  36. Karama, M., Afaq, K.S., Mistou, S.: A new theory for laminated composite plates. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 223, 53–62 (2009)

    MATH  Google Scholar 

  37. Aydogdu, M.: A new shear deformation theory for laminated composite plates. Compos. Struct. J. 89, 94–101 (2008)

    Google Scholar 

  38. Soldatos, K.P.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94, 195–220 (1992)

    MathSciNet  MATH  Google Scholar 

  39. Mantari, J.L., Oktem, A.S., Guedes Soares, C.: A new higher order shear deformation theory for sandwich and composite laminated plates. Compos. Part B Eng. 43, 1489–1499 (2012)

    MATH  Google Scholar 

  40. Belinha, J.: Analysis of plates and laminates using the element-free Galerkin method. Comput. Struct. 84, 1547–1559 (2006)

    Google Scholar 

  41. Dai, K.Y., Liu, G.R., Lim, K.M., et al.: A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates. J. Sound Vib. 269, 633–652 (2004)

    Google Scholar 

  42. Donning, B.M., Liu, W.K.: Meshless methods for shear-deformable beams and plates. Comput. Method Appl. Mech. Eng. 152, 47–71 (1998)

    MATH  Google Scholar 

  43. Xiang, S., Li, G., Zhang, W., et al.: A meshless local radial point collocation method for free vibration analysis of laminated composite plates. Compos. Struct. 93, 280–286 (2011)

    Google Scholar 

  44. Levinson, M.: An accurate simple theory of the statics and dynamics of elastic plates. Mech. Res. Commun. 7, 343–350 (1980)

    MATH  Google Scholar 

  45. Aydogdu, M.: A new shear deformation theory for laminated composite plates. Compos. Struct. 89, 94–101 (2009)

    Google Scholar 

  46. Solanki, M.K., Kumar, R., Singh, J.: Flexure analysis of laminated plates using multiquadratic RBF based meshfree method. Int. J. Comput. Methods 15, 1850049 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Ferreira, A.J.M.: A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Compos. Struct. 59, 385–392 (2003)

    Google Scholar 

  48. Ferreira, A.J.M.: Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Compos. Struct. 69, 449–457 (2005)

    Google Scholar 

  49. Xiao, J.R., Gilhooley, D.F., Mccarthy, M.A.: Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method. Compos. Part B Eng. 39, 414–427 (2008)

    Google Scholar 

  50. Chen, S.S., Xu, C.J., Tong, G.S., et al.: Free vibration of moderately thick functionally graded plates by a meshless local natural neighbor interpolation method. Eng. Anal. Bound. Elem. 61, 114–126 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Bui, T.Q., Khosravifard, A., Zhang, C., et al.: Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method. Eng. Struct. 47, 90–104 (2013)

    Google Scholar 

  52. Bui, T.Q., Nguyen, M., Zhang, C.: An efficient meshfree method for vibration analysis of laminated composite plates. Comput. Mech. 48, 175–193 (2011)

    MATH  Google Scholar 

  53. Bui, T.Q., Nguyen, M.: Meshfree Galerkin Kriging model for bending and buckling analysis of simply supported laminated composite plates. Int. J. Comput. Methods 10, 1350011 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Belinha, J., Araújo, A.L., Ferreira, A.J.M., et al.: The analysis of laminated plates using distinct advanced discretization meshless techniques. Compos. Struct. 143, 165–179 (2016)

    Google Scholar 

  55. Yin, S., Yu, T., Bui, T.Q., et al.: In-plane material inhomogeneity of functionally graded plates: a higher-order shear deformation plate isogeometric analysis. Compos. Part B Eng. 106, 273–284 (2016)

    Google Scholar 

  56. Bui, T.Q., van Do, T.V., Ton, L.H.T., et al.: On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory. Compos. Part B Eng. 92, 218–241 (2016)

    Google Scholar 

  57. van Do, T.V., Nguyen, D.K., Duc, N.D., et al.: Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory. Thin-Walled Struct. 119, 687–699 (2017)

    Google Scholar 

  58. Vu, T.V., Curiel-Sosa, J.L., Bui, T.Q.: A refined sin hyperbolic shear deformation theory for sandwich FG plates by enhanced meshfree with new correlation function. Int. J. Mech. Mater. Des. 15, 647–669 (2019)

    Google Scholar 

  59. Moreira, S., Belinha, J., Dinis, L., et al.: Analysis of laminated beams using the natural neighbour radial point interpolation method. Rev. Int. Metod. Numer. PARA Calc. Y Disen. EN Ing. 30, 108–120 (2014)

    Google Scholar 

  60. Santos, C.F., Belinha, J., Gentil, F., et al.: The free vibrations analysis of the cupula in the inner ear using a natural neighbor meshless method. Eng. Anal. Bound. Elem. 92, 50–63 (2018)

    MathSciNet  MATH  Google Scholar 

  61. Peyroteo, M.M.A., Belinha, J., Vinga, S., et al.: Mechanical bone remodelling: comparative study of distinct numerical approaches. Eng. Anal. Bound. Elem. 100, 125–139 (2019)

    MathSciNet  MATH  Google Scholar 

  62. Rodrigues, D.E.S., Belinha, J., Pires, F.M.A., et al.: Homogenization technique for heterogeneous composite materials using meshless methods. Eng. Anal. Bound. Elem. 92, 73–89 (2018)

    MathSciNet  MATH  Google Scholar 

  63. Marques, M., Belinha, J., Oliveira, A.F., et al.: A multiscale homogenization procedure combining the fabric tensor with a natural neighbour meshless method. Eng. Anal. Bound. Elem. 100, 211–224 (2019)

    MathSciNet  MATH  Google Scholar 

  64. Farahani, B.V., Belinha, J., Amaral, R., et al.: Extending radial point interpolating meshless methods to the elasto-plastic analysis of aluminium alloys. Eng. Anal. Bound. Elem. 100, 101–117 (2019)

    MathSciNet  MATH  Google Scholar 

  65. Dinis, L., Natal Jorge, R.M., Belinha, J.: Large deformation applications with the radial natural neighbours interpolators. Comput. Model. Eng. Sci. 44, 1–34 (2009)

    MathSciNet  MATH  Google Scholar 

  66. Hardy, R.L.: Theory and applications of the multiquadric-biharmonic method. Comput. Math. Appl. 19, 163–208 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors truly acknowledge the funding provided by Ministério da Ciência, Tecnologia e Ensino Superior—Fundação para a Ciência e a Tecnologia (Portugal), (Grants SFRH/BD/121019/2016 and MIT-EXPL/ISF/0084/2017). Additionally, the authors gratefully acknowledge the funding provided by LAETA, under project UIDB/50022/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Belinha.

Appendix

Appendix

1.1 Interpolation functions

The NNRPIM uses multiquadric RBFs combined with polynomial basis functions to obtain interpolation functions that possess the delta Kronecker property.

Thus, considering a function \(u(\varvec{x})\) defined in the domain \(\varOmega\), which is discretized by a set of \(N\) nodes, and assuming that only the nodes within the “influence-cell” of the interest point \(\varvec{x}_{I}\) affect the value of the function \(u(\varvec{x}_{I} )\), Eq. (A1) is obtained. The function \(u(\varvec{x})\) passes through all nodes using a radial basis function (RBF).

$$u\left( {\varvec{x}_{I} } \right) = \sum\limits_{i = 1}^{n} {R_{i} \left( {\varvec{x}_{I} } \right)} \,a_{i} \left( {\varvec{x}_{I} } \right) + \sum\limits_{j = 1}^{m} {p_{j} (\varvec{x}_{I} )\,b_{j} (\varvec{x}_{I} )} ,$$
(A1)

where \(n\) is the number of nodes within the “influence-cell” of \(\varvec{x }_{I}\), \(m\) is the basis monomial number, \(R_{i} \left( {\varvec{x}_{I} } \right)\) is the RBF, \(a_{i} \left( {\varvec{x}_{I} } \right)\) and \(b_{j} \left( {\varvec{x}_{I} } \right)\) are non-constant coefficients of \(R_{i} \left( {\varvec{x}_{I} } \right)\) and \(p_{j} \left( {\varvec{x}_{I} } \right)\), the polynomial basis, respectively. In 2D problems, the RBFs are dependent of the vector \(r_{I\,i}\), the Euclidian distance between the interest point \(\varvec{x}_{I}\) and each node \(\varvec{x}_{i}\) within the influence-cell of \(\varvec{x}_{I}\)

$$R(r_{Ii} ) = \left( {r_{Ii}^{2} + c^{2} } \right)^{p} ,$$
(A2)
$$r_{Ii} = \sqrt {(x_{I} - x_{i} )^{2} + (y_{I} - y_{i} )^{2} } .$$
(A3)

Equation (A2) represents the multiquadric (MQ) RBFs proposed initially by Hardy [66], being \(c\) and \(p\) the shape parameters that, according to Ref. [1], should be \(c = 0.0001\) and \(p = 0.9999\).

Rewriting Eq. (A1) in a matrix form,

$$u\left( {\varvec{x}_{I} } \right) = \varvec{R}^{\text{T}} \left( {\varvec{x}_{I} } \right)\,\,\varvec{a}\left( {\varvec{x}_{I} } \right) + \,\varvec{p}^{\text{T}} \left( {\varvec{x}_{I} } \right)\,\,\varvec{b}\left( {\varvec{x}_{I} } \right) = \left\{ {\begin{array}{*{20}c} {\varvec{R}^{\text{T}} \left( {\varvec{x}_{I} } \right)} & {\varvec{p}^{\text{T}} \left( {\varvec{x}_{I} } \right)} \\ \end{array} } \right\}\left\{ {\begin{array}{*{20}c} {\varvec{a}\left( {\varvec{x}_{I} } \right)} \\ {\varvec{b}\left( {\varvec{x}_{I} } \right)} \\ \end{array} } \right\},$$
(A4)

being the vectors of Eq. (A4),

$$\varvec{R}\left( {\varvec{x}_{I} } \right) = \left\{ {R_{1} \left( {\varvec{x}_{I} } \right),\,\,R_{2} \left( {\varvec{x}_{I} } \right),\,\,\, \ldots ,\,\,\,R_{n} \left( {\varvec{x}_{I} } \right)} \right\}^{\text{T}} ,$$
(A5)
$$\varvec{p}\left( {\varvec{x}_{I} } \right) = \left\{ {p_{1} \left( {\varvec{x}_{I} } \right),\,\,p_{2} \left( {\varvec{x}_{I} } \right),\,\,\, \ldots ,\,\,\,p_{m} \left( {\varvec{x}_{I} } \right)\,} \right\}^{\text{T}} ,$$
(A6)
$$\varvec{a}\left( {\varvec{x}_{I} } \right) = \left\{ {a_{1} \left( {\varvec{x}_{I} } \right),\,\,a_{2} \left( {\varvec{x}_{I} } \right),\,\,\, \ldots ,\,\,\,a_{n} \left( {\varvec{x}_{I} } \right)\,} \right\}^{\text{T}} ,$$
(A7)
$$\varvec{b}\left( {\varvec{x}_{I} } \right) = \left\{ {b_{1} \left( {\varvec{x}_{I} } \right),\,\,b_{2} \left( {\varvec{x}_{I} } \right),\,\, \ldots ,\,\,b_{m} \left( {\varvec{x}_{I} } \right)} \right\}^{\text{T}} .$$
(A8)

The polynomial basis function has sequence of terms presented in Eq. (A9)

$$\varvec{p}^{\text{T}} \left( {\varvec{x}_{I} } \right) = \left\{ {1,\,x,\,y,\,x^{2} ,\,\,xy,\,y^{2} ,\,\, \ldots \,} \right\}.$$
(A9)

The number of terms depends on the chosen monomial number, \(m\), which should be \(m < n\) in order to obtain a more stable function,

$$\begin{aligned} & {\text{Null }}\,{\text{basis}}\text{ (}m = 0\text{)}:\,\,\,\,\,\,\,\,\,\,\,\,\,\varvec{p}^{T} (\varvec{x}) = \left\{ 0 \right\}\,\,,\,\,m = 0, \hfill \\ & {\text{Constant }}\,{\text{basis}}\text{ (}m = 1\text{)}:\,\,\,\,\,\,\varvec{p}^{T} (\varvec{x}) = \left\{ 1 \right\}\,\,,\,\,m = 1, \hfill \\ & {\text{Linear}}\,{\text{ basis}}\text{ (}m = 3\text{)}:\,\,\,\,\,\,\,\,\,\,\varvec{p}^{T} (\varvec{x}) = \left\{ {\begin{array}{*{20}c} 1 & x & y \\ \end{array} } \right\}\,,\,\,m = 3, \hfill \\ & {\text{Quadratic}}\,{\text{ basis}}\text{ (}m = 6\text{)}:\,\,\,\varvec{p}^{T} (\varvec{x}) = \left\{ {\begin{array}{*{20}c} 1 & x & y & {x^{2} } & {xy} & {y^{2} } \\ \end{array} } \right\}\,\,,\,\,m = 6. \hfill \\ \end{aligned}$$
(A10)

A “null basis” is the absence of polynomial basis. If it is chosen a polynomial basis with \(m > 0\), an extra requirement need to be satisfied in order to guarantee a unique approximation,

$$\sum\limits_{i = 1}^{n} {p_{j} (\varvec{x}_{i} )\,a_{i} (\varvec{x}_{i} )} = 0 \Leftrightarrow \varvec{p}^{\text{T}} (\varvec{x}_{i} )\,\,\varvec{a}(\varvec{x}_{i} ) = 0,\quad j = 1,2, \ldots ,m.$$
(A11)

Combining Eq. (A11) with Eq. (A4), the following system of equations can be established,

$$\left\{ {\begin{array}{*{20}c} {\varvec{u}_{s} } \\ {\mathbf{0}} \\ \end{array} } \right\} = \left[ {\begin{array}{*{20}c} {\varvec{R}^{\text{T}} \left( {\varvec{x}_{I} } \right)} & {\varvec{p}\left( {\varvec{x}_{I} } \right)} \\ {\varvec{p}^{T} \left( {\varvec{x}_{I} } \right)} & {\mathbf{0}} \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\varvec{a}\left( {\varvec{x}_{I} } \right)} \\ {\varvec{b}\left( {\varvec{x}_{I} } \right)} \\ \end{array} } \right\} = \varvec{G}\left\{ {\begin{array}{*{20}c} {\varvec{a}\left( {\varvec{x}_{I} } \right)} \\ {\varvec{b}\left( {\varvec{x}_{I} } \right)} \\ \end{array} } \right\},$$
(A12)

where the vector \(\varvec{u}_{s}\) is defined as \(\varvec{u}_{s} = \left\{ {u_{1} ,u_{2} , \ldots ,u_{n} } \right\}^{T}\) and the matrixes \(\varvec{R}\) [\(n \times n\)] and \(\varvec{p}\) [\(n \times m\)] are given

$$\varvec{R} = \left[ {\begin{array}{*{20}c} {R(r_{11} )} & {R(r_{12} )} & \ldots & {R(r_{1n} )} \\ {R(r_{21} )} & {R(r_{22} )} & \ldots & {R(r_{2n} )} \\ \vdots & \vdots & \ddots & \vdots \\ {R(r_{n1} )} & {R(r_{n2} )} & \cdots & {R(r_{nn} )} \\ \end{array} } \right],$$
(A13)
$$\varvec{p} = \left[ {\begin{array}{*{20}c} {p_{\text{1}} (\varvec{x}_{\text{1}} )} & {p_{\text{2}} (\varvec{x}_{\text{1}} )} & \ldots & {p_{m} (\varvec{x}_{\text{1}} )} \\ {p_{\text{1}} (\varvec{x}_{\text{2}} )} & {p_{\text{2}} (\varvec{x}_{\text{2}} )} & \ldots & {p_{m} (\varvec{x}_{\text{2}} )} \\ \vdots & \vdots & \ddots & \vdots \\ {p_{\text{1}} (\varvec{x}_{n} )} & {p_{\text{2}} (\varvec{x}_{n} )} & \cdots & {p_{m} (\varvec{x}_{n} )} \\ \end{array} } \right].$$
(A14)

The distance between the interest points and the nodes that belong to their “influence-cell” is directional independent. Thus, the matrix \(\varvec{G}\) is symmetric. Solving Eq. (A12) in order to the non-constant coefficients,

$$\left\{ {\begin{array}{*{20}c} {\varvec{a}\left( {\varvec{x}_{I} } \right)} \\ {\varvec{b}\left( {\varvec{x}_{I} } \right)} \\ \end{array} } \right\}\varvec{ = G}^{{ - \text{1}}} \left\{ {\begin{array}{*{20}c} {\varvec{u}_{s} } \\ {\mathbf{0}} \\ \end{array} } \right\},$$
(A15)

and substituting Eq. (A15) into Eq. (A4), the interpolation functions, \(\varvec{\varphi }\,(\varvec{x}_{I} )\), are finally determined,

$$u(\varvec{x}_{I} ) = \left\{ {\varvec{R}^{T} (\varvec{x}_{I} )\,,\,\varvec{p}^{T} (\varvec{x}_{I} )} \right\}\,\,\,\varvec{G}^{ - 1} \,\left\{ {\begin{array}{*{20}c} {\varvec{u}_{\text{s}} } \\ \text{0} \\ \end{array} } \right\} = \left\{ {\varphi (\varvec{x}_{I} ),\psi (\varvec{x}_{I} )} \right\}\,\varvec{u}_{s} ,$$
(A16)
$$\varvec{\varphi }(\varvec{x}_{I} ) = \left\{ {\varvec{R}^{T} (\varvec{x}_{I} )\,,\,\varvec{p}^{T} (\varvec{x}_{I} )} \right\}\,\,\,\varvec{G}^{ - 1} = \left\{ {\varphi_{1} (\varvec{x}_{I} ),\varphi_{2} (\varvec{x}_{I} ), \ldots ,\varphi_{n} (\varvec{x}_{I} )} \right\}.$$
(A17)

Vector \(\psi (\varvec{x}_{I} )\) is a residual vector without a significant physical meaning. In Ref. [1], it can be found a detailed explanation about the construction procedure of the shape functions, its partial derivatives and most relevant mathematical properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, D.E.S., Belinha, J., Dinis, L.M.J.S. et al. Analysis of antisymmetric cross-ply laminates using high-order shear deformation theories: a meshless approach. Acta Mech. Sin. 36, 1078–1098 (2020). https://doi.org/10.1007/s10409-020-00990-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00990-z

Keywords

Navigation