Skip to main content
Log in

Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is composed of two different subunits, GapA and GapB. cDNA clones containing the entire coding sequences of the cytosolic precursors for GapA from pea and for GapB from pea and spinach have been identified, sequenced and the derived amino acid sequences have been compared to the corresponding sequences from tobacco, maize and mustard. These comparisons show that GapB differs from GapA in about 20% of its amino acid residues and by the presence of a flexible and negatively charged C-terminal extension, possibly responsible for the observed association of the enzyme with chloroplast envelopes in vitro. This C-terminal extension (29 or 30 residues) may be susceptible to proteolytic cleavage thereby leading to a conversion of chloroplast GAPDH isoenzyme I into isoenzyme II. Evolutionary rate comparisons at the amino acid sequence level show that chloroplast GapA and GapB evolve roughly two-fold slower than their cytosolic counterpart GapC. GapA and GapB transit peptides evolve about 10 times faster than the corresponding mature subunits. They are relatively long (68 and 83 residues for pea GapA and spinach GapB respectively) and share a similar amino acid framework with other chloroplast transit peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beisiegel U: Protein blotting. Electrophoresis 7: 1–18 (1986).

    Google Scholar 

  2. Benton WD, Davis RW: Screening λgt recombinant clones by hybridization to single plaques in situ. Science 196: 180–182 (1977).

    PubMed  Google Scholar 

  3. Biesecker G, Harris JI, Thierry JC, Walker JE, Wonacott AJ: Sequence and structure of D-glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus. Nature 266: 328–333 (1977).

    PubMed  Google Scholar 

  4. Brinkmann H, Martinez P, Quigley F, Martin W, Cerff R: Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde 3-phosphate dehydrogenase from maize. J Mol Evol 26: 320–328 (1987).

    PubMed  Google Scholar 

  5. Cerff R: Glyceraldehyde-3-phosphate dehydrogenase (NADP) from Sinapis alba. NAD(P)-induced conformation changes of the enzyme. Eur J Biochem 82, 45–53 (1978).

    PubMed  Google Scholar 

  6. Cerff R: Quaternary structure of higher plant glyceraldehyde-3-phosphate dehydrogenases. Eur J Biochem 94: 243–247 (1979).

    PubMed  Google Scholar 

  7. Cerff R: Separation and purification of NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenases from higher plants. In: Edelmann M, Hallick RB, Chua NH (eds) Methods in Chloroplast Molecular Biology, pp. 683–694. Elsevier Biomedical Press, Amsterdam (1982).

    Google Scholar 

  8. Cerff R, Chambers SE: Subunit structure of higher plant glyceraldehyde-3-phosphate dehydrogenases (EC 1.2.1.12 and EC 1.2.1.13). J Biol Chem 254: 6094–6098 (1979).

    PubMed  Google Scholar 

  9. Cerff R, Kloppstech K: Structural diversity and differential light control of mRNAs coding for angiosperm glyceraldehyde-3-phosphate dehydrogenases. Proc Natl Acad Sci USA 79: 7624–7628 (1982).

    Google Scholar 

  10. Cerff R, Hundrieser J, Friedrich R: Subunit B of chloroplast glyceraldehyde-3-phosphate dehydrogenase is related to beta-tubulin. Mol Gen Genet 204: 44–51 (1986).

    Article  Google Scholar 

  11. Conway T, Sewell GW, Ingram LO: Glyceraldehyde-3-phosphate dehydrogenase gene from Zymomonas mobilis: cloning sequencing and identification of promotor region. J Bacteriol 169: 5653–5662 (1987).

    PubMed  Google Scholar 

  12. Chojecki J: Identification and characterization of a cDNA clone for cytosolic glyceraldehyde-3-phosphate dehydrogenase in barley. Carlsberg Res Commun 51: 203–210 (1986).

    Google Scholar 

  13. Dayhoff MO: Atlas of Protein Sequence and Structure, vol. 5, suppl. 3, p. 3. National Biochemical Research Foundation, Washington, DC (1978).

    Google Scholar 

  14. Douce R, Joyard J: Structure and function of the plastid envelope. Adv Bot Res 7: 1–116 (1979).

    Google Scholar 

  15. Dover GA, Flavell RB: Molecular coevolution: DNA divergence and the maintenance of function. Cell 38: 622–623 (1984).

    Article  PubMed  Google Scholar 

  16. Ferri G, Stoppini M, Iadarola P, Zapponi MC, Galliano M, Minchiotti L: Structural characterisation of the subunits of spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase (NADP). Biochim Biophys Acta 915: 149–156 (1987).

    Google Scholar 

  17. Flügge UI, Fischer K, Gross A, Sebald W, Lottspeich F, Eckerskorn C: The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J 8: 39–46 (1989).

    PubMed  Google Scholar 

  18. Flügge UI, Heldt W: The phosphate-triosephosphate-phosphoglycerate translocator of the chloroplast. Trends Biochem Sci 9: 530–533 (1984).

    Article  Google Scholar 

  19. Gubler U, Hoffman BJ: A simple and very efficient method for generating cDNA libraries. Gene 25: 263–269 (1983).

    Article  PubMed  Google Scholar 

  20. Harris JI, Waters M: Glyceraldehyde-3-phosphate dehydrogenase. In: Boyer PD (ed) The Enzymes, 3rd ed, vol. 13, pp. 1–48. Academic Press, New York (1976).

    Google Scholar 

  21. Jukes TH, Cantor CR: In: Munro HN (ed) Mammalian Protein Metabolism, pp. 21–123. Academic Press, New York (1969).

    Google Scholar 

  22. Karlin-Neumann G, Tobin EM: Transit peptides of nuclear encoded chloroplast proteins share a common amino acid framework. EMBO J 5: 9–13 (1986).

    PubMed  Google Scholar 

  23. Laemmli OK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).

    PubMed  Google Scholar 

  24. Maniatis T, Hardison RC, Lacy E, Lauer J, O'Connell C, Quon D, Sim GK, Efstratiados A: The isolation of structural genes from libraries of eukaryotic DNA. Cell 15: 687–701 (1978).

    Article  PubMed  Google Scholar 

  25. Maniatis T, Fritsch EF, Sambrook G: Synthesis of cDNA. In: Molecular cloning; A laboratory manual, pp. 211–246. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1982).

    Google Scholar 

  26. Martin W, Cerff R: Prokaryotic features of a nucleus-encoded enzyme. Eur J Biochem 159: 323–331 (1986).

    PubMed  Google Scholar 

  27. Murray NE: Phage lambda and molecular cloning. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II, pp. 395–432. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1983). Lambda II, pp. 395–432. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1983).

    Google Scholar 

  28. Rossmann MG, Liljas A, Bränden CJ, Banaszak J: Evolutionary and structural relationships among dehydrogenases. In: Boyer PD (ed) The Enzymes, 3rd edn, vol. 11, pp. 61–102. Academic Press, New York (1975).

    Google Scholar 

  29. Sanger F, Nickler S, Coulson AR: DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  30. Scherer G, Telford J, Baldari C, Pirrotta V: Dev Biol 86: 438–447 (1981).

    PubMed  Google Scholar 

  31. Schmidt GW, Mishkind ML: The transport of proteins into chloroplasts. Ann Rev Biochem 55: 879–912 (1986).

    Article  PubMed  Google Scholar 

  32. Shih MC, Lazar G, Goodman HM: Evidence in favor of the symbiotic origin of chloroplasts: primary structure and evolution of tobacco glyceraldehyde-3-phosphate dehydrogenases. Cell 47: 73–80 (1986).

    Article  PubMed  Google Scholar 

  33. Skarzynski T, Moody PCE, Wonacott AJ: Structure of the hologlyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus at 1,8 Å resolution. J. Mol Biol 193: 171–187 (1987).

    PubMed  Google Scholar 

  34. Tittgen J, Hermans J, Steppuhn J, Jansen T, Jansson C, Andersson B, Nechushtai R, Nelson N, Herrmann C: Isolation of cDNA clones for fourteen nuclear-encoded hylakoid membrane proteins. Mol Gen Genet 204: 258–265 (1986).

    Google Scholar 

  35. VonHeijne G: A new method for predicting signal sequence cleavage sites. Nucl Acids Res 14, 4683–4690 (1986).

    PubMed  Google Scholar 

  36. Von Heijne G, Stepphuhn J, Herrmann RG: Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem, in press.

  37. Young RA, Davis RW: Yeast RNA polymerase II genes: isolation with antibody probes. Science 222: 778–782 (1983).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkmann, H., Cerff, R., Salomon, M. et al. Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach. Plant Mol Biol 13, 81–94 (1989). https://doi.org/10.1007/BF00027337

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027337

Key words

Navigation