Skip to main content
Log in

Characterization of cDNA clones encoding the extrinsic 23 kDa polypeptide of the oxygen-evolving complex of photosystem II in pea

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The 23 kDa polypeptide of the oxygen-evolving complex of photosystem II has been extracted from pea photosystem II particles by washing with 1 M NaCl and purified by anion-exchange chromatography. The N-terminal amino acid sequence has been determined and specific antisera have been raised in rabbits and used to screen a pea-leaf cDNA library in λgt11. Determination of the nucleotide sequence of two clones provided the nucleotide sequence for the full 23 kDa polypeptide. The deduced amino acid sequence showed it to code for a mature protein of 186 amino acid residues with an N-terminal presequence of 73 amino acid residues showing a high degree of conservation with previously reported 23 kDa sequences from spinach and Chlamydomonas. Southern blots of genomic DNA from pea probed with the labelled cDNA gave rise to only one band suggesting that the protein is encoded by a single gene. Northern blots of RNA extracted from various organs indicated a message of approximately 1.1 kb, in good agreement with the size of the cDNA, in all chlorophyll-containing tissues. Western blots of protein extracted from the same organs indicated that the 23 kDa polypeptide was present in all major organs of the plant except the roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bis-Tris:

bis (2-hydroxyethyl) imino-tris (hydroxymethyl)-methane

pfu:

plaque-forming units

References

  1. Akabori K, Imaoka A, Toyoshima Y: The role of lipids and 17-kDa protein in enhancing the recovery of O2 evolution in cholate-treated thylakoid membranes. FEBS Lett 173: 36–40 (1984).

    Article  Google Scholar 

  2. Andersson B: Proteins participating in photosynthetic water oxidation. In: Staehlin LA, Arntzen CJ (eds) Photosynthesis III. Encyclopedia of Plant Physiology 19, pp. 447–456. Springer-Verlag, Berlin (1986).

    Google Scholar 

  3. Andersson B, Critchley C, Ryrie IJ, Jansson C, Larsson C, Anderson JM: Modification of the chloride requirement for photosynthetic O2 evolution: The role of the 23-kDa polypeptide. FEBS Lett 168: 113–117 (1984).

    Article  Google Scholar 

  4. Andersson B, Larsson C, Jansson C, Ljungberg U, Åkerlund H-E: Immunological studies on the organization of proteins in photosynthetic oxygen evolution. Biochim Biophys Acta 766: 21–28 (1984).

    Google Scholar 

  5. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7: 1512–1523 (1979).

    Google Scholar 

  6. Coruzzi G, Broglie R, Edwards C, Chua N-H: Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. EMBO 3: 1671–1679 (1984).

    PubMed  Google Scholar 

  7. Covey SN, Hall R: Transcription of cauliflower mosaic virus DNA: Detection of transcripts, properties and location of gene encoding the virus inclusion body protein. Virology 111: 463–474 (1981).

    Article  Google Scholar 

  8. Dretzen G, Bellard M, Sassone-Corsi P, Chambon P: A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Anal Biochem 112: 295–298 (1981).

    PubMed  Google Scholar 

  9. Eckes P, Rosahl S, Schell J, Willmitzer L: Isolation and characterization of a light-inducible, organ-specific gene from potato and analysis of its expression after tagging and transfer into tobacco and potato shoots. Mol Gen Genet 205: 14–22 (1986).

    Google Scholar 

  10. Feinberg AP, Vogelstein B: A technique for radiolabelling restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  11. Ford RC, Evans MCW: Isolation of a photosystem 2 preparation from higher plants with highly enriched oxygen evolution activity. FEBS Lett 160: 159–164 (1983).

    Article  Google Scholar 

  12. Gantt JS, Key JL: Isolation of nuclear encoded plastid ribosomal protein cDNAs. Mol Gen Genet 202: 186–193 (1986).

    Article  PubMed  Google Scholar 

  13. Ghanotakis DF, Babcock GT, Yocum CF: Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted photosystem II preparations. FEBS Lett 167: 127–130 (1984).

    Article  Google Scholar 

  14. Gray JC, Dunn PPJ, Eccles CJ, Hird SM, Last DI, Newman BJ, Willey DL: Synthesis of electron transfer components of the photosynthetic apparatus. In: vonWettstein D, Chua N-H (eds) Plant Molecular Biology, pp. 105–113. Plenum, New York (1987).

    Google Scholar 

  15. Hageman J, Robinson C, Smeekens S, Weisbeek P: A thylakoid processing protease is required for complete maturation of the lumen protein plastocyanin. Nature 324: 567–569 (1986).

    Google Scholar 

  16. Jansen T, Rother C, Steppuhn J, Reinke H, Beyreuther K, Jansson C, Andersson B, Herrman RG: Nucleotide sequence of cDNA clones encoding the complete 23-kDa and 16-kDa precursor proteins associated with the photosynthetic oxygen-evolving complex from spinach. FEBS Lett 216: 234–240 (1987).

    Article  Google Scholar 

  17. Kalberer PP, Buchanan BB, Arnon DI: Rates of photosynthesis by isolated chloroplasts. Proc Natl Acad Sci USA 57: 1542–1549 (1967).

    PubMed  Google Scholar 

  18. Karlin-Neumann GA, Tobin EM: Transit peptides of nuclear-encoded chloroplast proteins share a common amino acid framework. EMBO J 5: 9–13 (1986).

    PubMed  Google Scholar 

  19. Kuwabara T, Murata N: Chemical and physiochemical characterization of the proteins involved in the oxygen evolution system. In: Sybesma C (ed) Advances in Photosynthetic Research I, pp. 371–374. Martinus Nijhoff/Dr W Junk, Dordrecht (1984).

    Google Scholar 

  20. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1971).

    Google Scholar 

  21. Lamppa GK, Morelli G, Chua N-H: Structure and developmental regulation of a wheat gene encoding the major chlorophyll a/b-binding polypeptide. Mol Cell Biol 5: 1370–1378 (1985).

    PubMed  Google Scholar 

  22. Lautner A, Klein R, Ljungberg U, Reilander H, Bartling D, Andersson B, Reinke H, Beyreuther K, Herrmann RG: Nucleotide sequence of cDNA clones encoding the complete precursor for the 10-kDa polypeptide of photosystem II from spinach. J Biol Chem 263: 10077–10081 (1988).

    PubMed  Google Scholar 

  23. Maniatis T, Fritsch EF, Sambrook J: Rapid, small scale isolation of bacteriophage λ DNA. In: Molecular Cloning: A Laboratory Manual p. 371. Cold Spring Harbor Press, Spring Harbor, NY (1982).

    Google Scholar 

  24. Mayfield SP, Bennoun P, Rochaix J-P: Expression of the nuclear encoded OEE1 protein is required for oxygen evolution and stability of photosystem II particles in Chlamydomonas reinhardtii. EMBO J 6: 313–318 (1987).

    PubMed  Google Scholar 

  25. Mayfield SP, Rahire M, Frank G, Zuber H, Rochaix J-D: Expression of the nuclear gene encoding oxygen-evolving enhancer protein 2 is required for high levels of photosynthetic oxygen evolution in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 84: 749–753 (1987).

    PubMed  Google Scholar 

  26. McMaster GK, Carmichael GC: Analysis of single-and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine organe. Proc Natl Acad Sci USA 74: 4835–4838 (1977).

    PubMed  Google Scholar 

  27. Miyao M, Murata N: Calcium ions can be substituted for the 24 kDa polypeptide in photosynthetic oxygen evolution. FEBS Lett 168: 118–120 (1984).

    Article  Google Scholar 

  28. Miyao M, Murata N: Role of the 33-kDa polypeptide in preserving Mn in the photosynthetic oxygen-evolution system and its replacement by chloride ions. FEBS Lett 170: 350–354 (1984).

    Article  Google Scholar 

  29. Murata N, Miyao M: Extrinsic membrane proteins in the photosynthetic oxygen-evolving complex. Trends Biochem Sci 10: 122–124 (1985).

    Article  Google Scholar 

  30. Nakatani HY: Photosynthetic oxygen evolution does not require the participation of polypeptides of 16 and 24 kilodaltons. Biochem Biophys Res Comm 120: 299–304 (1984).

    Article  PubMed  Google Scholar 

  31. Piechulla B, Pichersky E, Cashmore AR, Gruissem W: Expression of nuclear and plastid genes for photosynthesis-specific proteins during tomato fruit development and ripening. Plant Mol Biol 7: 367–376 (1986).

    Google Scholar 

  32. Reed KC, Mann DA: Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res 13: 7207–7221 (1985).

    PubMed  Google Scholar 

  33. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5469 (1977).

    PubMed  Google Scholar 

  34. Sheen J-Y, Sayre RT, Bogorad L: Differential expression of oxygen-evolving polypeptide genes in maize leaf cell types. Plant Mol Biol 9: 217–226 (1987).

    Google Scholar 

  35. Southern EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517 (1975).

    PubMed  Google Scholar 

  36. Smeekens S, Bauerle C, Hageman J, Keegstra K, Weisbeek P: The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell 46: 365–375 (1986).

    Article  PubMed  Google Scholar 

  37. Stewart AC, Ljungberg U, Åkerlund H-E, Andersson B: Studies on the polypeptide composition of the cyanobacterial oxygen-evolving complex. Biochim Biophys Acta 808: 353–362 (1985).

    Google Scholar 

  38. Tittgen J, Hermans J, Steppuhn J, Jansen T, Jansson C, Andersson B, Nechushtai R, Nelson N, Herrmann RC: Isolation of cDNA clones for fourteen nuclear-encoded thylakoid membrane proteins. Mol Gen Genet 204: 258–265 (1986).

    Google Scholar 

  39. Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from acrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354 (1979).

    PubMed  Google Scholar 

  40. Tyagi A, Hermans J, Steppuhn J, Jansson C, Vater F, Herrmann RG. Nucleotide sequence of cDNA clones encoding the complete ‘33kDa’ precursor protein associated with the photosynthetic oxygen-evolving complex from spinach. Mol Gen Genet 207: 288–293 (1987).

    Article  Google Scholar 

  41. Wales R, Newman BJ, Pappin D, Gray JC: The extrinsic 33-kDa polypeptide of the oxygen-evolving complex of photosystem II is a putative calcium-binding protein and is encoded by a multi-gene family in pea. Plant Mol Biol 12: 439–451 (1989).

    Article  Google Scholar 

  42. Webber AN, Packman LC, Gray JC: A 10-kDa polypeptide associated with the oxygen-evolving complex of photosystem II has a putative C-terminal noncleavable thylakoid transfer domain. FEBS Lett 242: 435–438 (1989).

    Article  PubMed  Google Scholar 

  43. Westhoff P, Jansson C, Klein-Hitpaß L, Berzborn P, Larsson C, Bartlett SG: Intracellular coding sites of polypeptides associated with photosystem II. Plant Mol Biol 4: 137–146 (1985).

    Google Scholar 

  44. Young RA, Davis RW: Yeast RNA polymerase II genes: Isolation with antibody probes. Science 222: 778–782 (1983).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wales, R., Newman, B.J., Rose, S.A. et al. Characterization of cDNA clones encoding the extrinsic 23 kDa polypeptide of the oxygen-evolving complex of photosystem II in pea. Plant Mol Biol 13, 573–582 (1989). https://doi.org/10.1007/BF00027317

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027317

Key words

Navigation