Skip to main content
Log in

The evolution of saline lake waters: gradual and rapid biogeochemical pathways in the Basotu Lake District, Tanzania

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The biogeochemical evolution of solutes markedly alters the chemistry in the closed-basin maar lakes that comprise the Basotu Lake District (Tanzania, East Africa). Examination of 11 (out of 13) lakes in the Basotu Lake District identified two distinct evolutionary pathways: a gradual path and a rapid path. During the course of biogeochemical evolution these waters follow either the gradual path alone or a combination of the gradual and rapid paths. Solute evolution along the gradual path is determined by all of the biogeochemical processes that for these waters appear to be tightly coupled to evaporative concentration (e.g. mineral precipitation, sorption and ion exchange, C02 degassing, and sulfate reduction). Rapid evolution occurs when mixing events suddenly permit H2S to be lost to the atmosphere. The chemistry of waters undergoing rapid evolution is changed abruptly because loss of every equivalent of sulfide produces an equivalent permanent alkalinity.

The Basotu Lake District in north central Tanzania is comprised of 13 maar lakes. They range in surface water conductivity from 592 to 24 000 µ S cm −1 (at 20°). Within these lake basins only a few of the variety of geo- and biogeochemical processes known to occur in lakes of this type are actually responsible for the gain and/or loss of individual solutes. For example, potassium appears to be taken up in the formation of illite. Calcium is precipitated as calcite. Magnesium interacts with alumino-silicate precursors to form a variety of clay minerals that contain magnesium (e.g. stevensite). This process is also known as reverse weathering. Sulfate is reduced to sulfide and subsequently lost as H2S and/or metal sulfides. Alkalinity is lost owing to calcite precipitation and as a consequence of reverse weathering. Alkalinity is gained in the form of extra permanent alkalinity when sulfide is lost from these waters (via metal sulfide precipitation or gaseous emission to the atmosphere). Rapid (punctuated) evolution can occur in any lake containing anoxic waters providing that mixing events take place which cause H2S to be lost to the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-el-Malek, Y. & S. G. Risk, 1963. Bacterial sulfate reduction and the development of alkalinity. J. appl. Bact. 26: 20–26.

    Google Scholar 

  • Anderson, V. G., 1945. Some effects of atmospheric evaporation and transpiration on the composition of natural waters in Australia, 3. The waters of interior drainage catchments. J. Proc. Aust. chem. Inst. 12: 60–68.

    Google Scholar 

  • American Public Health Association, 1965. Standard methods for the examination of water and wastewater, APHA, N.Y., 769 pp.

    Google Scholar 

  • Arad, A. & W. H. Morton, 1969. Mineral springs and saline lakes of the western Rift Valley, Uganda. Geochim. cosmochim. Acta 33: 1169–1181.

    Google Scholar 

  • Beadle, L. C., 1981. The inland waters of tropical Africa. 2nd ed., Longman, London. 475 pp.

    Google Scholar 

  • Berner, R. A., 1971. Principles of chemical sedimentology. McGraw-Hill, New York.

    Google Scholar 

  • Carmouze, J.-P., 1983. Hydrochemical regulation of the lake. In dJ.-P. Carmouze, J.-R. Durand & C. Lévêque (eds.), Lake Chad, Ecology and Productivity of Shallow Tropical Ecosystem. Dr. W. Junk, The Hague: 95–123.

    Google Scholar 

  • Cerling, T. E., 1979. Paleochemistry of Plio-Pleistocene Lake Turkana, Kenya. Paleogeogr. Paleoclimatol. Paleoecol. 27: 247–285.

    Google Scholar 

  • Cook, R. B., 1984. Distributions of ferrous iron and sulfide in an anoxic hypolimnion. Can. J. Fish. aquat. Sci. 41: 286–293.

    Google Scholar 

  • Dawson, J. B., 1964. Carbonatitic volcanic ashes in Northern Tanganyika. Bull. volcan. 27: 81–91.

    Google Scholar 

  • Downie, C. & P. Wilkinson, 1962. The explosion craters of Basotu, Tanganyika Territory. Bull. volcan. 14: 389–420.

    Google Scholar 

  • Drever, J. I., 1988. The geochemistry of natural waters. 2nd ed. Prentice-Hall, Englewood Cliffs. 437 pp.

    Google Scholar 

  • Dunnette, D. I., D. P. Chynoweth& K. H. Mancy, 1985. The sources of hydrogen sulfide in anoxic sediment. Wat. Res. 19: 875–884.

    Google Scholar 

  • Eades, N. W. & W. H. Reeve, 1938. Explanation of the geology of degree sheet No. 29 (Singida). Bull. geol. Div. Tanganyika Dep. Lands Mines 11: 5–59.

    Google Scholar 

  • Eugster, H. P., 1970. Chemistry and origin of brines of Lake Magadi, Kenya. Spec. Pap. mineralog. Soc. Am. 3: 215–235.

    Google Scholar 

  • Eugster, H. P. & B. F. Jones, 1979. Behavior of major solutes during closed-basin brine evolution. Am. J. Sci. 279: 609–631.

    Google Scholar 

  • Eugster, H. P. & G. Maglione, 1979. Brines and evaporites of the Lake Chad basin, Africa. Geochim. cosmochim. Acta 43: 973–981.

    Google Scholar 

  • Folt, C. L., M. J. Wevers, M. P. Yoder-Williams& R. P. Howmiller, 1989. Field study comparing growth and viability of a population of phototrophic bacteria. Appl. envir. Microbiol. 55: 78–85.

    Google Scholar 

  • Gasse, F., J. F. Talling& P. Kilham, 1983. Diatom assemblages in East Africa: classification, distribution, and ecology. Revue Hydrobiol. trop. 16: 3–34.

    Google Scholar 

  • Garrels, R. M. & F. T. Mackenzie, 1967. Origin of the chemical composition of some springs and lakes. In Equilibrium Concepts in Natural Water Systems. Adv. Chem. Ser. 67: 222–242.

  • Goldhaber, M. B. & I. R. Kaplan, 1974. The sulfur cycle. In E. D. Goldberg (ed.), The Sea, 5. Interscience, N.Y.: 569–655.

    Google Scholar 

  • Hardie, L. A. & H. P. Eugster, 1970. The evolution of closedbasin brines. Spec. Pap. mineralog. Soc. Am. 3: 273–290.

    Google Scholar 

  • Hecky, R. E. & P. Kilham, 1973. Diatoms in alkaline, saline lakes: Ecology and geochemical implications. Limnol. Oceanogr. 18: 53–71.

    Google Scholar 

  • Heinrich, E. W., 1966. The geology of carbonatites. Rand McNally & Co., Chicago.

    Google Scholar 

  • Holland, T. H. & W. A. K. Christie, 1909. The origin of the salt deposits of Rajputana. Rec. geol. Surv. India 38: 154–186.

    Google Scholar 

  • Hutchinson, G. E., 1957. A treatise on limnology, 1. J. Wiley & Sons, N.Y., 1015 pp.

    Google Scholar 

  • Jones, B. F., H. P. Eugster& S. L. Rettig, 1977. Hydrogeochemistry of the Lake Magadi basin, Kenya. Geochim. cosmochim. Acta 41: 53–72.

    Google Scholar 

  • Jones, B. F. & A. H. Weir, 1983. Clay minerals of Lake Abert, an alkaline, saline lake. Clays Clay Mineral. 31: 161–172.

    Google Scholar 

  • Kilham, P., 1971a. The geochemical evolution of closed basin lakes. Abstrs. Progms. geol. Soc. Am. 3(7): 770–772.

    Google Scholar 

  • Kilham, P., 1971b. Biogeochemistry of African lakes and rivers. Ph.D. thesis, Duke Univ., Durham (N.C.), 199 pp.

  • Kilham, P., 1984. Sulfate in African inland waters: sulfate to chloride ratios. Verh. int. Ver. Limnol. 22: 296–302.

    Google Scholar 

  • Kilham, P. & R. E. Hecky, 1973. Fluoride: Geochemical and ecological significance in East African waters and sediments. Limnol. Oceanogr. 18: 932–945.

    Google Scholar 

  • King, D. L., J. J. Simmler, C. S. Decker& C. W. Ogg, 1974. Acid strip mine lake recovery. J. Wat. Pollut. Cont. Fed. 46: 2301–2316.

    Google Scholar 

  • Kling, G. W., 1987. Seasonal mixing and catastrophic degassing in tropical lakes, Cameroon, West Africa. Science 237: 1022–1024.

    Google Scholar 

  • MacIntyre, S. & J. M. Melack, 1982. Meromixis in an equatorial African soda lake. Limnol. Oceanogr. 27: 595–609.

    Google Scholar 

  • Mackereth, F. J. H., 1963. Some methods of water analysis for limnologists. Scient. Publ. Freshwat. biol. Ass. 21. 71 p.

  • Müller, G., G. Irion& U. Förstner, 1972. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften 59: 158–164.

    Google Scholar 

  • Nürnberg, G., 1984. Iron and hydrogen sulfide interference in the analysis of soluble reactive phosphorus in anoxic waters. Wat. Res. 18: 369–377.

    Google Scholar 

  • Pappe, A. & H. D. Richmond, 1890. A Central African salt lake. J. Soc. chem. Ind. Lond. 9: 734.

    Google Scholar 

  • Perkin-Elmer, 1964. Analytical methods for atomic absorption spectrophotometry. Perkin-Elmer, Norwalk. Looseleaf, unpaginated.

  • Prosser, M. V., R. B. Wood& R. M. Baxter, 1968. the Bishoftu crater lakes: A bathymetric and chemical study. Arch. Hydrobiol. 65: 309–324.

    Google Scholar 

  • Rodhe, H. & H. Virji, 1976. Trends and periodicities in East African rainfall data. Mon. Weath. Rev. U.S. Dep. Agric. 104: 307–315.

    Google Scholar 

  • Ruttner, F., 1931. Hydrographische and hydrochemische Beobachtungen auf Java, Sumatra and Bali. Arch. Hydrobiol. Suppl. 8: 197–454.

    Google Scholar 

  • Singer, A. & P. Stoffers, 1980. Clay mineral diagenesis in two East African lake sediments. Clay Mineral. 15: 291–307.

    Google Scholar 

  • Stanley, H. M., 1890. In darkest Africa, 2. Charles Scribner's Sons, N.Y., 540 pp.

    Google Scholar 

  • Talling, J. F. & I. B. Talling, 1965. The chemical composition of African lake waters. Int. Revue ges. Hydrobiol. 50: 421–463.

    Google Scholar 

  • Truesdell, A. H. & B. F. Jones, 1974. WATEQ, a computer program for calculating chemical equilibria of natural waters. J. Res. U.S. geol. Serv. 2: 233–248.

    Google Scholar 

  • Von Damm, K. L. & J. M. Edmond, 1984. Reverse weathering in the closed-basin lakes of the Ethiopian Rift and in Lake Turkana (Kenya). Am. J. Sci. 284: 835–862.

    Google Scholar 

  • Wood, R. B. & J. F. Talling, 1988. Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158: 29–67.

    Google Scholar 

  • Yuretich, R. G. & T. E. Cerling, 1983. Hydrogeochemistry of Lake Turkana, Kenya: Mass balance and mineral reactions in an alkaline lake. Geochim. cosmochim. Acta 47: 1099–1109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Peter Kilham died on March 20, 1989, in Kisumu, Kenya, while working as part of a research team on Lake Victoria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilham, P., Cloke, P.L. The evolution of saline lake waters: gradual and rapid biogeochemical pathways in the Basotu Lake District, Tanzania. Hydrobiologia 197, 35–50 (1990). https://doi.org/10.1007/BF00026937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026937

Key words

Navigation