, Volume 176, Issue 1, pp 213–223 | Cite as

Distribution of nutrients, trace elements, PAHs and radionuclides in sediment cores from Lake Varese (N. Italy)

  • A. Provini
  • G. Premazzi
  • S. Galassi
  • G. F. Gaggino
Contaminant accumulation, distributions, geochemistry and minerology


Sediment cores were collected at 5 stations in Lake Varese. They were analyzed for organic matter, N, P, organic C, Cd, Cr, Cu, Hg, Pb, Zn and PAHs. A sedimentological approach has been applied to estimate the ecological risk from identified pollutants.

As in other eutrophic lakes in Northern Italy, this lake is also at considerable risk from heavy metal pollution. Cr, Cu and Cd showed the highest enrichment factors for the last 5 years, 23.4, 8.0 and 7.6 respectively. Other metals had enrichment factors ranging from 1 to 3. Fluoranthene was chosen as a representative PAH, derived from combustion products; its average value in surficial sediments ranged from 100 to 220 ng l-1 dw. This compound can be a hazard to human health and aquatic life. An evaluation of radionuclide distributions after the recent Chernobyl accident in the USSR (134Cs, 137C s, 131I, 106Ru) provided useful tracers to follow the cycling of pollutants bound to particulate matter in the aquatic ecosystem.

Key words

sediments heavy metals PAHs Lake Varese 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumann, P. C., W. D. Smith & M. Ribick, 1982. Hepatic tumor rates and polynuclear aromatic hydrocarbon levels in two populations of brown bullhead (Ictalurus nebulosus). In 'Polynuclear aromatic hydrocarbons: Sixth Int. Symp. on Biological Chemistry', M. W. Cooke, Dennis, A. J. & G. L. Fisher (eds), Battelle Press, Columbus, Ohio: 93–102.Google Scholar
  2. Bedding N. D., A. E. Mc Intyre, R. Perry & J. N. Lester, 1982. Organic contaminants in the aquatic environment. I. Sources and occurrence. Sci. Total Envir. 25: 143–167.Google Scholar
  3. Bloesch, J., 1977. Sedimentation rates and sediment cores in two Swiss lakes of different trophic status. In `Interactions between sediments and freshwater', Golterman, H. L. (ed.), Junk, The Hague: 65–71.Google Scholar
  4. Brwen, H. J. M., 1966. Trace elements in Biochemistry. Academic Press, London, pp. 241.Google Scholar
  5. Borneff, J. & K. Kunte, 1965. Carcinogenic substances in water and soil. Part XVII: Concerning the origin and estimation of the polycyclic aromatic hydrocarbons in water. Arch. Hyg. (Berlin) 149: 226–243.Google Scholar
  6. US-EPA, 1973. Water Quality Criteria, 1972. Ecological Research Series, EPA R373033, Washington, D.C., pp. 594.Google Scholar
  7. Galassi, S. & M. Mighavacca, 1986. Organochlorine residues in River Po sediment: testing the equilibrium condition with fish. Ecotoxicol. Envir. Saf. 12: 120–126.Google Scholar
  8. Håkanson, L., 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Wat. Res. 14: 975–1001.Google Scholar
  9. Håkanson, L. & M. Jansson, 1983. Principles of lake sedimentology. Springer-Verlag, New York, pp. 316.Google Scholar
  10. Hansen, K., 1961. Lake types and lake sediments. Verh. Internat. Verein. Limnol. 14: 285–290.Google Scholar
  11. Heit, M., 1985. The relationship of a coal fired power plant to the level of polycyclic aromatic hydrocarbons (PAH) in the sediment of Cayuga lake. Water Air Soil Pollut. 24: 41–61.Google Scholar
  12. Heit, M. & Y. L. Tan, 1979. The concentration of selected polycyclic aromatic hydrocarbons in the surface sediments of some fresh and marine waters of the U.S. USDOE Rept. EML-353, New York, p. I–3 to I–39.Google Scholar
  13. Karickhoff, S. W., V. S. Brown & T. A. Scott, 1979. Sorption of hydrophobic pollutants on marine sediments. Wat. Res. 13: 241–248.Google Scholar
  14. Malins, D. C., B. B. McCain, D. W. Brown, S. L. Chan, M. S. Meyers, J. T. Landahl, P. G. Prohaska, A. J. Freidman, L. D. Rhodes, D. G. Burrows, W. D. Gronlund & H. O. Hodgins, 1984. Chemical pollutants in sediments and diseases of bottom-dwelling fish in Puget Sound, Washington. Envir. Sci. Technol. 18: 705–713.Google Scholar
  15. Neff, J. M., 1979. Polycyclic aromatic hydrocarbons in the aquatic environment. Sources, fates and biological effects. Appl. Sci. Publ. LTD, London, pp. 262.Google Scholar
  16. Parise, G. & G. Premazzi, 1986. I fenomeni di compattazione nella geocronologia dei sediments lacustri. Acqua e Aria 8: 783–790.Google Scholar
  17. Pettersson, K. & B. Bostrom, 1986. Phosphorus exchange between sediment and water in Lake Balaton In 'Sediment and water interaction, P. G. Sly (ed.), Springer-Verlag, New York: 427–435.Google Scholar
  18. Premazzi, G., 1979. The Cs-137 technique to evaluate recent sedimentation rates. Atti Convegno sull'Eutrofizzazione in Italia, (R. Marchetti ed.), CNR AC/2/45-70: 181–196.Google Scholar
  19. Premazzi, G., A. Provini, G. F. Gaggino & G. Parise, 1986. Geochemical trends in sediments from 13 Italian subalpine lakes. In `Sediment and water interaction', P. G. Sly (ed.), Springer-Verlag, New York: 157–165.Google Scholar
  20. Provini, A. & G. F. Gaggino, 1986. Depth profiles of Cu, Cr, and Zn in Lake Orta sediments (Northern Italy). In ‘Sediment and water interaction’, P. G. Sly (ed.), Springer-Verlag, New York: 167–174.Google Scholar
  21. Scheiner, D., 1976. Determination of ammonia Kjeldhal nitrogen by indophenol method. Wat. Res. 10: 31–36.Google Scholar
  22. Yulshamm, K. & O. R. Braekkan, 1975. Determination of trace elements in fish tissues by standard addition method. At. Absorp. Newlett. 14: 49–52.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • A. Provini
    • 1
  • G. Premazzi
    • 2
  • S. Galassi
    • 1
  • G. F. Gaggino
    • 1
  1. 1.Water Research Institute (IRSA)BrugherioItaly
  2. 2.CEC Joint Research Centre-21021IspraItaly

Personalised recommendations