Skip to main content
Log in

Molecular basis for novel root phenotypes induced by Agrobacterium rhizogenes A4 on cucumber

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have used the wild-type Agrobacterium rhizogenes strain A4 to induce roots on cucumber stem explants. Cultures of transformed roots obtained that were capable of hormone-autonomous growth could be grouped in three phenotypic classes. Of particular interest were extremely thick roots of a type not previously described. Characterization of the transferred DNA and of the expression of the corresponding genes allowed us to determine that the genes rolABC of the TL region of the Ri plasmid are sufficient to induce thin roots similar to those observed in other species, while the aux genes of the TR region are sufficient to induce thick roots. Among clones bearing the aux genes, there was a correlation between level of expression of aux2 and root phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birot AM, Bouchez D, Casse-Delbart F, Durand-Tardif M, Jouanin L, Pautot V, Robaglia C, Tepfer D, Tepfer M, Tourneur J, Vilaine F: Studies and uses of the Ri plasmids of Agrobacterium rhizogenes. Plant Physiol Biochem 3: 323–335 (1987).

    Google Scholar 

  2. Bouchez D, Camilleri C: Identification of a putative rolB gene on the TR-DNA of the Agrobacterium rhizogenes A4 Ri plasmid. Plant Mol Biol 14: 617–619 (1990).

    PubMed  Google Scholar 

  3. Bouchez D, Tourneur J: Organization and nucleotide sequence of the agropine synthesis region on the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid 25: 27–39 (1991).

    PubMed  Google Scholar 

  4. Boyer PD: A sensitive technique for detection of RNA with single-stranded probes. Nucl Acids Res 14: 7505 (1986).

    PubMed  Google Scholar 

  5. Camilleri C, Jouanin L: Nucleotide sequence of part of pRiA4 TR region containing the auxin synthesis genes and introduction into plants. Mol Plant-Microbe Interact 4: 155–162 (1991).

    PubMed  Google Scholar 

  6. Cardarelli M, Mariotti D, Pomponi M, Spano L, Costantino P: Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209: 475–480 (1987).

    Article  Google Scholar 

  7. Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J: Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295: 432–434 (1982).

    Google Scholar 

  8. Chirgwin JM, Przybyla AE, McDonald RJ, Rutter WJ: Isolation of biologically active ribonucleic acid from sources enriched in ribonucleases. Biochemistry 18: 5294–5298 (1979).

    PubMed  Google Scholar 

  9. Dellaporta SL, Wood J, Hicks JB: A plant DNA minipreparation: version II. Plant Mol Biol Rep 1: 19–21 (1983).

    Google Scholar 

  10. Depicker AG, Jacobs AM, Van Montagu MC: A negative selection scheme for tobacco protoplast-derived cells expressing the T-DNA gene 2. Plant Cell Rep 7: 63–66 (1988).

    Article  Google Scholar 

  11. de Vries-Uijtewaal E, Gilissen LJW, Flipse E, Sree Ramalu K, de Groot B: Characterization of root clones obtained after transformation of monohaploid and diploid potato genotypes with hairy root inducing strains of Agrobacterium. Plant Sci 58: 193–202 (1988).

    Article  Google Scholar 

  12. Durand-Tardif M, Broglie R, Slightom J, Tepfer D: Structure and expression of Ri T-DNA from Agrobacterium rhizogenes in Nicotiana tabacum. Organ and phenotypic specificity. J Mol Biol 186: 557–564 (1985).

    PubMed  Google Scholar 

  13. Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  14. Glisin V, Crkvenjakov R, Byus C: Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 13: 2633–2637 (1974).

    PubMed  Google Scholar 

  15. Huffman GA, White FF, Gordon MP, Nester EW: Hairy root inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bact 157: 269–276 (1984).

    PubMed  Google Scholar 

  16. Jouanin L: Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12: 91–102 (1984).

    PubMed  Google Scholar 

  17. Jouanin L, Guerche P, Pamboukdjian N, Tourneur C, Casse-Delbart F, Tourneur J: Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206: 387–392 (1987).

    Google Scholar 

  18. Lehrach H, Diamond-Wozney JM, Boedker H: RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16: 4743–4751 (1977).

    PubMed  Google Scholar 

  19. McInnes E, Morgan AJ, Mulligan BJ, Davey MR: Roots induced on cucumber cotyledons by the agropine Ri plasmid TR-DNA exhibit the transformed phenotype. Plant Cell Rep 9: 647–650 (1991).

    Google Scholar 

  20. Ooms G, Twell D, Bossen ME, Hoge JHC, Burrel MM: Developmental regulation of Ri TL-DNA gene expression in roots, shoots and tubers of transformed potato (Solanum tuberosum cv. Desiree). Plant Mol Biol 6: 321–330 (1986).

    Google Scholar 

  21. Slightom J, Durand-Tardif M, Jouanin L, Tepfer D: Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. J Biol Chem 261: 108–121 (1986).

    PubMed  Google Scholar 

  22. Spano L, Pomponi M, Costantino P, van Slogteren GMS, Tempé J: Identification of T-DNA in the root inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Biol 1: 291–300 (1982).

    Google Scholar 

  23. Spena A, Schmlling T, Koncz C, Schell JS: Independent and synergistic activity of rol A, B, and C loci stimulating abnormal growth in plants. EMBO J 6: 3891–3899 (1987).

    Google Scholar 

  24. Taylor BH, White FF, Nester EW, Gordon MP: Transcription of Agrobacterium rhizogenes A4 T-DNA. Mol Gen Genet 201: 546–553 (1985).

    Google Scholar 

  25. Tepfer D, Tempé J: Production d'agropine par des racines formées sous l'action d'Agrobacterium rhizogenes, souche A4. CR Acad Sci Paris 292: 153–156 (1981).

    Google Scholar 

  26. Tepfer M, Casse-Delbart F: Agrobacterium rhizogenes as a vector for transforming higher plants. Microbiol Sci 4: 24–30 (1987).

    PubMed  Google Scholar 

  27. Vilaine F, Casse-Delbart F: Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet 206: 17–23 (1987).

    Google Scholar 

  28. Vilaine F, Charbonnier C, Casse-Delbart F: Further insight concerning the TL region of the Ri plasmid of Agrobacterium rhizogenes strain A4: transfer of a 1.9 kpb fragment is sufficient to induce transformed roots on tobacco leaf fragments. Mol Gen Genet 210: 111–115 (1987).

    Google Scholar 

  29. Willmitzer L, Sanchez-Serrano J, Bushfeld E, Shell J: DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissues. Mol Gen Genet 186: 16–22 (1982).

    Google Scholar 

  30. White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW: Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bact 164: 33–34 (1985).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amselem, J., Tepfer, M. Molecular basis for novel root phenotypes induced by Agrobacterium rhizogenes A4 on cucumber. Plant Mol Biol 19, 421–432 (1992). https://doi.org/10.1007/BF00023390

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023390

Key words

Navigation