Skip to main content

Generation of Stable Catharanthus roseus Hairy Root Lines with Agrobacterium rhizogenes

  • Protocol
  • First Online:
Plant Secondary Metabolism Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2469))

Abstract

Agrobacterium rhizogenes is the bacterial agent that causes hairy root disease in dicots and is purposefully engineered for the development of transgenic hairy root cultures. Due to their genetic and metabolic stability, hairy root cultures offer advantages as a tissue culture system for investigating the function of transgenes and as a production platform for specialized metabolites or proteins. The process for generating hairy root cultures involves first infecting the explant with A. rhizogenes, excising and eliminating A. rhizogenes from the emerging hairy roots, selecting for transgenic hairy roots on plates containing the selective agent, confirming genomic integration of transgenes by PCR, and finally adapting the hairy roots in liquid media. Here we provide a detailed protocol for developing and maintaining transgenic hairy root cultures of our medicinal plant of interest, Catharanthus roseus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riker AJ, Banfield WM, Wright WH et al (1930) Studies on infectious hairy root of nursery apple trees. J Agric Res 41:507–540

    Google Scholar 

  2. Young JM, Kuykendall LD, Martínez-Romero E et al (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103. https://doi.org/10.1099/00207713-51-1-89

    Article  CAS  PubMed  Google Scholar 

  3. Gutierrez-Valdes N, Häkkinen ST, Lemasson C et al (2020) Hairy root cultures—a versatile tool with multiple applications. Front Plant Sci 11:33

    Article  Google Scholar 

  4. Peebles CAM, Gibson SI, Shanks JV, San KY (2007) Long-term maintenance of a transgenic Catharanthus roseus hairy root line. Biotechnol Prog 23:1517–1518. https://doi.org/10.1021/bp0702166

    Article  CAS  PubMed  Google Scholar 

  5. Häkkinen ST, Moyano E, Cusidó RM, Oksman-Caldentey KM (2016) Exploring the metabolic stability of engineered hairy roots after 16 years maintenance. Front Plant Sci 7:1486. https://doi.org/10.3389/fpls.2016.01486

    Article  PubMed  PubMed Central  Google Scholar 

  6. Peebles CAM, Sander GW, Li M et al (2009) Five year maintenance of the inducible expression of anthranilate synthase in Catharanthus roseus hairy roots. Biotechnol Bioeng 102:1521–1525. https://doi.org/10.1002/bit.22173

    Article  CAS  PubMed  Google Scholar 

  7. Goklany S, Loring RH, Glick J, Lee-Parsons CWT (2009) Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding. Biotechnol Prog 25:1289–1296. https://doi.org/10.1002/btpr.204

    Article  CAS  PubMed  Google Scholar 

  8. Goklany S, Rizvi NF, Loring RH et al (2013) Jasmonate-dependent alkaloid biosynthesis in Catharanthus roseus hairy root cultures is correlated with the relative expression of ORCA and ZCT transcription factors. Biotechnol Prog 29:1367–1376. https://doi.org/10.1002/btpr.1801

    Article  CAS  PubMed  Google Scholar 

  9. Huffman GA, White FF, Gordon MP, Nester EW (1984) Hairy-root-inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bacteriol 157:269–276. https://doi.org/10.1128/jb.157.1.269-276.1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. White FF, Taylor BH, Huffman GA et al (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44. https://doi.org/10.1128/jb.164.1.33-44.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  CAS  Google Scholar 

  12. Taneja J, Jaggi M, Wankhede DP, Sinha AK (2010) Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots. Plant Cell Rep 29:1119–1129. https://doi.org/10.1007/s00299-010-0895-8

    Article  CAS  PubMed  Google Scholar 

  13. McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127

    Article  CAS  Google Scholar 

  14. Lee L-Y, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146:325–332. https://doi.org/10.1104/pp.107.113001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park SU, Facchini PJ (2000) Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholzia californica Cham., root cultures. J Exp Bot 51:1005–1016. https://doi.org/10.1093/jexbot/51.347.1005

    Article  CAS  PubMed  Google Scholar 

  16. Thwe A, Arasu MV, Li X et al (2016) Effect of different Agrobacterium rhizogenes strains on hairy root induction and phenylpropanoid biosynthesis in tartary buckwheat (Fagopyrum tataricum Gaertn). Front Microbiol 7:318. https://doi.org/10.3389/fmicb.2016.00318

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mortensen S, Bernal-Franco D, Cole LF et al (2019) EASI transformation: an efficient transient expression method for analyzing gene function in Catharanthus roseus seedlings. Front Plant Sci 10:1–17. https://doi.org/10.3389/fpls.2019.00755

    Article  Google Scholar 

  18. Hansen G, Das A, Chilton M-D (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci 91:7603–7607

    Article  CAS  Google Scholar 

  19. Rizvi NF, Cornejo M, Stein K et al (2015) An efficient transformation method for estrogen-inducible transgene expression in Catharanthus roseus hairy roots. Plant Cell Tissue Organ Cult 120:475–487. https://doi.org/10.1007/s11240-014-0614-1

    Article  CAS  Google Scholar 

  20. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580. https://doi.org/10.1016/S0022-2836(83)80284-8

    Article  CAS  PubMed  Google Scholar 

  21. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300. https://doi.org/10.1128/JB.62.3.293-300.1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Salinas J, Sanchez-Serrano JJ (2006) Arabidopsis protocols, 2nd edn. Humana Press, Totowa, NJ

    Google Scholar 

  23. Haas JH, Ream W, Manulis S (1995) Universal PCR primers for detection of phytopathogenic. Microbiology 61:2879–2884

    CAS  Google Scholar 

  24. Suttipanta N, Pattanaik S, Kulshrestha M et al (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157:2081–2093. https://doi.org/10.1104/pp.111.181834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn W. T. Lee-Parsons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Traverse, K.K.F., Mortensen, S., Trautman, J.G., Danison, H., Rizvi, N.F., Lee-Parsons, C.W.T. (2022). Generation of Stable Catharanthus roseus Hairy Root Lines with Agrobacterium rhizogenes . In: Fett-Neto, A.G. (eds) Plant Secondary Metabolism Engineering. Methods in Molecular Biology, vol 2469. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2185-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2185-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2184-4

  • Online ISBN: 978-1-0716-2185-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics