Skip to main content
Log in

Molecular characterization of a phosphoenolpyruvate carboxylase in the gymnosperm Picea abies (Norway spruce)

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Phosphoenolpyruvate carboxylase (PEPC) genes and cDNA sequences have so far been isolated from a broad range of angiosperm but not from gymnosperm species. We constructed a cDNA library from seedlings of Norway spruce (Picea abies) and identified cDNAs coding for PEPC. A full-length PEPC cDNA was sequenced. It consists of 3522 nucleotides and has an open reading frame (ORF) that encodes a polypeptide (963 amino acids) with a molecular mass of 109 551. The deduced amino acid sequence revealed a higher similarity to the C3-form PEPC of angiosperm species (86–88%) than to the CAM and C4 forms (76–84%). The putative motif (Lys/Arg-X-X-Ser) for serine kinase, which is conserved in all angiosperm PEPCs analysed so far, is also present in this gymnosperm sequence. Southern blot analysis of spruce genomic DNA under low-stringency conditions using the PEPC cDNA as a hybridization probe showed a complex hybridization pattern, indicating the presence of additional PEPC-related sequences in the genome of the spruce. In contrast, the probe hybridized to only a few bands under high-stringency conditions. Whereas this PEPC gene is highly expressed in roots of seedlings, a low-level expression can be detected in cotyledons and adult needles. A molecular phyiogeny of plant PEPC including the spruce PEPC sequence revealed that the spruce PEPC sequence is clustered with monocot and dicot C3-form PEPCs including the only dicot C4 form characterized so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert HA, Martin T, Sun SSM: Structure and expression of a sugarcane gene encoding a housekeeping phosphoenolpyruvate carboxylase. Plant Mol Biol 20: 663–671 (1992).

    PubMed  Google Scholar 

  2. Bachmann B, Lüke W, Hunsmann G: Improvement of PCR amplified DNA sequencing with the aid of detergens. Nucl Acids Res 18: 1309 (1990).

    PubMed  Google Scholar 

  3. Bandurski RS, Greiner CM: The enzymatic synthesis of oxaloacetate from phosphoenolpyruvate and carbon dioxide. J Biol Chem 204: 781–786 (1953).

    Google Scholar 

  4. Bauer S, Galliano H, Pfeiffer F, Meßner B, Sandermann H, Ernst D: Isolation and characterization of a cDNA clone encoding a novel short-chain alcohol dehydro- genase from Norway spruce (Picea abies L. Karst.). Plant Physiol 103: 1479–1480 (1993).

    Article  PubMed  Google Scholar 

  5. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7: 1513–1523 (1979).

    PubMed  Google Scholar 

  6. Bousquet J, Strauss SH, Doerksen AH and Price RA: Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc Natl Acad Sci USA 89: 7844–7848 (1992).

    PubMed  Google Scholar 

  7. Cavener DR, Stuart CR: Eukaryotic start and stop translation sites. Nucl Acids Res 19: 3185–3192 (1991).

    PubMed  Google Scholar 

  8. Chardot TP, Wedding R: Role of cysteine in activation and allosteric regulation of maize phosphoenolpyruvate carboxylase. Plant Physiol 98: 780–783 (1992).

    Google Scholar 

  9. Chomczynski P: One-hour downward alkaline capilary transfer for blotting of DNA and RNA. Anal Biochem 201: 134–139 (1992).

    PubMed  Google Scholar 

  10. Clapham DH, vonArnold S, Dormling I Ekberg I, Eriksson G, Larsson C-T, Norrell L, Qamaruddin M: Variation in total and specific RNA during inwintering of two contrasting populations of Picea abies. Physiol Plant 90: 504–512 (1994).

    Google Scholar 

  11. Crétin C, Santi S, Keryer E, Lepiniee L, Tagu D, Vidal J, Gadal P: The phosphoenolpyruvate carboxylase gene family of Sorghum: promotor structures, amino acid sequences and expression of genes. Gene 99: 87–94 (1991).

    Article  PubMed  Google Scholar 

  12. Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ: Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during crassulacean acid metabolism induction in the common ice plant. Plant Cell 1: 715–725 (1989).

    Article  PubMed  Google Scholar 

  13. Cushman JC, Bohnert HJ: Nucleotide sequence of the ppc2 gene encoding a house-keeping isoform of phosphoenolpyruvate carboxylase from Mesembryanthemum crystallinum. Nucl Acids Res 17: 6743–6744 (1989).

    PubMed  Google Scholar 

  14. Cushman JC, Bohnert HJ: Nucleotide sequence of a gene encoding a CAM specific isoform of phosphoenolpyruvate carboxylase from Mesembryanthemum crystallinum Nucl Acids Res 17: 6745–6746 (1989).

    PubMed  Google Scholar 

  15. Duff SMG, Chollet R: In vivo regulation of wheat-leaf phosphoenolpyruvate carboxylase by reversible phosphorylation. Plant Physiol 107: 775–782 (1995).

    PubMed  Google Scholar 

  16. Eikmanns BJ, Follettie MT, Griot MU, Sinskey AJ: The phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum Mol Gen Genet 218: 330–339 (1989).

    Article  PubMed  Google Scholar 

  17. Feinberg AP, Vogelstein B: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  18. Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 (1985).

    Google Scholar 

  19. Fujita N, Miwa T, Ishijama K, Katsuki H: The primary structure of phosphoenolpyruvate carboxylase of E. coli J Biochem 95: 909–916 (1984).

    PubMed  Google Scholar 

  20. Galliano H, Cabané M, Eckerskorn C, Lottspeich F, Sandermann H, Ernst D: Molecular cloning, sequence analysis and elicitor-l ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Mol Biol 23: 145–156 (1993).

    PubMed  Google Scholar 

  21. Hermans J, Westhoff P: Homologous genes for the C4 isoform of phosphoenolpyruvate carboxylase in a C3 and a C4 Flaveria species. Mol Gen Genet 234: 275–284 (1992).

    Article  PubMed  Google Scholar 

  22. Hudspeth RL, Glackin CA, Bonner J, Grula JW: Genomic and and cDNA clones for maize phosphenolpyruvate carboxylase and pyruvate, orthophosphate dikinase: Expression of different genes-family members in leaves and roots. Proc Natl Acad Sci USA 83: 2884–2888 (1986).

    Google Scholar 

  23. Izui K, Ishijima S, Yamaguchi Y, Katagiri F, Murata T, Shigesata K, Sugiyama T, Katsuki H: Cloning and sequence analysis of cDNA encoding active phosphoenolpyruvate carboxylase of the C4-pathway from maize. Nucl Acids Res 14: 1615–1628 (1986).

    PubMed  Google Scholar 

  24. Jiao JA, Chollet R: Regulatory phosphorylation of serine-15 in maize phosphoenolpyruvate carboxylase by a C4-leaf protein-serine kinase. Arch Biochem Biophys 283: 300–305 (1990).

    PubMed  Google Scholar 

  25. Katagiri F, Kodaki T, Fujita N, Izui K, Katsuki H: Nucleotide sequence of the phosphoenolpyruvate carboxylase gene of the cyanobacterium Anacystis nidulans. Gene 38: 265–269 (1985).

    Article  PubMed  Google Scholar 

  26. Kawamura T, Shigesada K, Toh H, Okumura S, Yanagisawa S, Izui K: Molecular evolution of phosphoenolpyruvate carboxylase for C4 photosynthesis in maize: Comparison of its cDNA sequence with a newly isolated cDNA encoding an isozyme involved in the anaplerotic function. J Biochem 112: 147–154 (1992).

    PubMed  Google Scholar 

  27. King BJ, Layzell DB, Canvin DT: The role of dark carbon dioxide fixation in root nodules of soybean. Plant Physiol 81: 200–205 (1986).

    Google Scholar 

  28. Koizumi N, Sato F, Terano Y, Yamada Y: Sequence analysis of cDNA encoding phosphoenolpyruvate carboxylase from cultured tobbacco cells. Plant Mol Biol 17: 535–539 (1991).

    Google Scholar 

  29. Kozak M: Comparison of initiation of protein synthesis in procaryotes, eukaryotes and organelles. Microbiol Rev 47: 1–45 (1983).

    PubMed  Google Scholar 

  30. Kozak M: Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucl Acids Res 12: 857–872 (1984).

    PubMed  Google Scholar 

  31. Kozak M: Selection of initiation sites by eukaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucl Acids Res 12: 3873–3893 (1984).

    PubMed  Google Scholar 

  32. Kumar S, Tamura K, Nei M: Mega: Molecular Evolutionary Genetics Analysis, Version 1.0. The Pennsylvania State University, Stata University, PA 16802, USA.

  33. Kvarnheden A Tandre K, Engström P: A cdc2 homologue and related processed retropseudogenes from Norway spruce. Plant Mol Biol 27: 391–403 (1995).

    PubMed  Google Scholar 

  34. Latzko E, Kelly GJ: The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants. Physiol Vég 21: 805–815 (1983).

    Google Scholar 

  35. Lepiniec L; Santi S, Kéryer E, Amiet V, Vidal J, Gadal P, Crétin C: Complete nucleotide sequence of one member of the Sorghum phosphoenolpyruvate carboxylase gene family. Plant Mol Biol 17: 1077–1079 (1991).

    Google Scholar 

  36. Lepiniec L, Kéryer E, Philippe H, Gadal P, Crétin C: Sorghum phosphoenolpyruvate carboxylase gene family: structure function and molecular evolution. Plant Mol Biol 21: 487–502 (1993).

    PubMed  Google Scholar 

  37. Lepiniec L, Vidal J, Chollet R, Gadal P, Crétin P: Phosphoenolpyruvate carboxylase: structure, regulation and evolution. Plant Sci 99: 111–124 (1994).

    Article  Google Scholar 

  38. Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA: Selection of AUG initiation codons differ in plants and animals. EMBO J 6: 43–48 (1987).

    PubMed  Google Scholar 

  39. Luinenburg I, Coleman JR: Identification, characterization and sequence analysis of the gene encoding phosphoenolpyruvate carboxylase in Anabaena sp. PCC7120. J Gen Microbiol 138: 685–691 (1992).

    PubMed  Google Scholar 

  40. Mac Kay JJ, Liu W, Whetten R, Sederoff RR and O'Malley DM: Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: single gene inheritance, molecular characterization and evolution. Mol Gen Genet 247: 537–545 (1995).

    Article  PubMed  Google Scholar 

  41. Martin F, Chemardin M, Gadal P: Nitrate assimilation and nitrogen circulation in Austrian pine. Physiol Plant 53: 105–110 (1981).

    Google Scholar 

  42. Martin W, Lydiate D, Brinkmann H, Forkmann G, Saedier H and Cerff R: Molecular phylogenies in angiosperm evolution. Mol Biol Evol 10: 140–162 (1993).

    PubMed  Google Scholar 

  43. Matsuoka M, Hata S: Comparative studies of phosphoenolpyruvate carboxylase from C3 and C4 plants. Plant Physiol 85: 947–951 (1987).

    Google Scholar 

  44. Merkelbach S, Gehlen J, Denecke M, Hirsch H-J, Kreuzaler F: Cloning, sequence analysis and expression of a cDNA encoding active phosphoenolpyruvate carboxylase of the C3 plant Solanum tuberosum Plant Mol Biol 23: 881–888 (1993).

    Article  PubMed  Google Scholar 

  45. Murray MG, Thompson WF: Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8: 4321–4325 (1980).

    PubMed  Google Scholar 

  46. O'Reagan M, Thierbach G, Bachmann B, Villeval D, Lepage P, Viret J-F, Lemoine Y: Cloning and nucieotide sequence of the phosphoenolpyruvate carboxylase-coding gene of Corynebacterium glutamicum ATCC13032. Gene 77: 237–251 (1989).

    Article  PubMed  Google Scholar 

  47. Pasternak JJ, Glick BR: Molecular evolutionary analyses of the small and large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase. Can J Bot 70: 715–723 (1992).

    Google Scholar 

  48. Pathirana SM, Vance CP, Miller SS, Gantt JS: Aflalfa nodule phosphoenolpyruvate carboxylase: characterization of the cDNA and expression in effective and plant-controlled ineffective nodules. Plant Mol Biol 20: 437–450 (1992).

    PubMed  Google Scholar 

  49. Relle M, Sutter A, Wild A: A method to isolate cDNA-quality RNA from adult conifer needles and a psbA cDNA from Norway spruce. J Plant Physiol 149: 225–228 (1996).

    Google Scholar 

  50. Rosendahl L, Vance CP, Pedersen WB: Products of dark CO2 fixation in pea root nodules support bacteroid metabolism. Plant Physiol 93: 12–19 (1990).

    Google Scholar 

  51. Saitou N, Nei M: the neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406–425 (1987).

    PubMed  Google Scholar 

  52. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

    Google Scholar 

  53. Schuller KA, Werner D: Phosphorylation of soybean (Glycine max L.) nodule phosphoenolpyruvate carboxylase in vitro decreases sensivity to inhibition by L-malate. Plant Physiol 101: 1267–1273 (1993).

    PubMed  Google Scholar 

  54. Schulz M, Hunte C, Schnabl H: Multiple forms of phosphoenolpyruvate carboxylase in mesophyll, epidermal and guard cells of Vicia faba. Physiol Plant 86: 315–321 (1992).

    Article  Google Scholar 

  55. Sugiharto B, Nakamoto H, Sasakawa H, Sugiyama T: Regulation of expression of carbon-assimilating enzymes by nitrogen in maize leaf. Plant Physiol 92: 963–969 (1990).

    Google Scholar 

  56. Sugimoto T, Kawasaki T, Kato T, Whittier RF, Shibata D, Kawamura Y: cDNA sequence and expression of a phosphoenolpyruvate carboxylase gene from soybean. Plant Mol Biol 20: 743–747 (1992).

    Google Scholar 

  57. Sundås A, Tandre K, Holmstedt E, Engström P: Differential gene expression during germination and after the induction of adventitious bud formation in Norway spruce embryos. Plant Mol Biol 18: 713–724 (1992).

    Article  PubMed  Google Scholar 

  58. Toh H, Kawamura T, Izui K: Molecular evolution of phosphoenolpyruvate carboxylase. Plant Cell Envir 17: 31–43 (1994).

    Google Scholar 

  59. Thompson JD, Higgins DG, Gibson TJ: Clustal W: Improving the sensivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22: 4673–4680 (1994).

    PubMed  Google Scholar 

  60. Troitsky AV, Melekhovets YF, Rakhimova GM, Bobrova VK, Valiejo-Roman KM, Antonov AS. Angiosperm origin and early stages of seed plant evolution deduced from rRNA sequence comparisons. J Mol Evol 32: 253–261 (1991).

    PubMed  Google Scholar 

  61. Wingler A, Einig W, Schaeffer C, Wallenda T, Hampp R, Wallander H, Nylund J-E: Influence of different nutrient regimes on the regulation of carbon metabolism in Norway spruce [Picea abies (L.) Karst.] seedlings. New Phytol 128: 323–330 (1994).

    Google Scholar 

  62. Woese CR: Bacterial evolution. Microbiol Rev 51: 221–271 (1987).

    PubMed  Google Scholar 

  63. Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR: Mitochondrial origins. Proc Natl Acad Sci USA 82: 4443–4447 (1985).

    PubMed  Google Scholar 

  64. Yokoyama S, Harry DE: Molecular phylogeny and evolutionary rates of alcohol dehydrogenases in vertebrates and plants. Mol Biol Evol 10: 1215–1226 (1993).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Relle, M., Wild, A. Molecular characterization of a phosphoenolpyruvate carboxylase in the gymnosperm Picea abies (Norway spruce). Plant Mol Biol 32, 923–936 (1996). https://doi.org/10.1007/BF00020489

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020489

Key words

Navigation