Skip to main content
Log in

Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn2+-metallothionein-deficient Synechococcus PCC 7942: putative role for MT2 in Zn2+ metabolism

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Zn2+ proteins pervade metabolism and are essential for gene expression. However, no proteins have been ascribed the central roles of Zn2+ donation to, or removal from, metalloproteins, or Zn2+ storage in vegetative plant tissue. In animals, such functions have been proposed for metallothioneins. Plants contain multiple metallothionein-like genes but their predicted products, which differ significantly from animal metallothioneins, remain to be isolated from vegetative tissue and their roles are uncertain. The type 2 metallothionein-like gene from Arabidopsis, MT2, was expressed under the control of Zn2+-responsive elements derived from the cyanobacterial metallothionein divergon, smt. Zn2+-dependent expression of MT2 transcripts in Synechococcus PCC 7942 was confirmed by northern analysis. The Arabidopsis MT2 gene partly complemented Zn2+ hypersensitivity in mutants of Synechococcus PCC 7942 which are functionally deficient in an endogenous Zn2+-metallothionein gene, smtA. MT2 was also expressed as a recombinant fusion protein in Escherichia coli, purified and shown to bind Zn2+ in vitro. The mean pH of half displacement of Zn2+ from MT2 was estimated to be 5.05. This suggests that MT2 has a greater affinity for Zn2+ than phytochelatins. The results presented here reveal that MT2 is capable of binding Zn2+ in vitro, conferring tolerance to elevated [Zn2+] in vivo within cyanobacteria and is likely to compete with other polypeptides for cellular Zn2+ in planta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brugnera E, Georgiev O, Radtke F, Heuchel R, Baker E, Sutherland GR, Schaffner W: Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucl Acids Res 22: 3167–3173 (1994).

    PubMed  Google Scholar 

  2. Buchanan-Wollaston V: Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus-identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol 105: 839–846 (1994).

    Article  PubMed  Google Scholar 

  3. De Framond AJ: A metallothionein-like gene from maize (Zea mays): cloning and characterization. FEBS Lett 290: 103–106 (1991).

    Article  PubMed  Google Scholar 

  4. De Miranda JR, Thomas MA, Thurman DA, Tomsett AB: Metallothionein genes from the flowering plant Mimulus guttatus. FEBS Lett 260: 277–280 (1990).

    Article  PubMed  Google Scholar 

  5. Evans IM, Gatehouse LN, Gatehouse JA, Robinson NJ, Croy RRD: A gene from pea (Pisum sativum L.) with homology to metallothionein genes. FEBS Lett 262: 29–32 (1990).

    Article  PubMed  Google Scholar 

  6. Evans KM, Gatehouse JA, Lindsay WP, JShi, Tommey AM, Robinson NJ: Expression of the pea metallothionein-like gene PsMT A in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMT A function. Plant Mol Biol 20: 1019–1028 (1992).

    PubMed  Google Scholar 

  7. Feinberg AP, Vogelstein B: A technique for radio-labelling restriction endonuclease fragments to a high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  8. Foley RC, Singh KB: Isolation of a Vicia faba metallothionein-like gene: expression in foliar trichomes. Plant Mol Biol 26: 435–444 (1994).

    PubMed  Google Scholar 

  9. Grill E: Phytochelatins in plants. In: Hamer DH, Winge DR (eds) Metal Ion Homeostasis: Molecular Biology and Chemistry, pp. 283–300. Alan R. Liss, New York (1989).

    Google Scholar 

  10. Grill E, Winnacker EL, Zenk MH: Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676 (1985).

    Google Scholar 

  11. Grill E, Winnaker EL, Zenk MH: Phytochelatins, a class of heavy metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84: 439–443 (1987).

    Google Scholar 

  12. Gupta A, Morby AP, Turner JS, Whitton BA, Robinson NJ: Deletion within the metallothionein locus of Cdtolerant Synechococcus PCC 6301 involving a highly iterated palindrome (HIP1). Mol Microbiol 7: 189–195 (1993).

    PubMed  Google Scholar 

  13. Hamer DH: Metallothionein. Annu Rev Biochem 55: 913–951 (1986).

    Google Scholar 

  14. Hofmann T, Kells DIC, Lane BG: Partial amino acid sequence of the wheat germ Ec protein. Comparison with another protein very rich in half-cystine and glycine: wheat germ agglutinin. Can J Biochem Cell Biol 62: 908–913 (1984).

    Google Scholar 

  15. Howden R, Anderson CR, Goldsbrough PB, Cobbett CS: A cadmium sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107: 1067–1073 (1995).

    Article  PubMed  Google Scholar 

  16. Howden R, Cobbett CS: Cadmium-sensitive mutants of Arabidopsis thaliana. Plant Physiol 99: 100–107 (1992).

    Google Scholar 

  17. Howden R, Goldsbrough PB, Anderson CR, Cobbett CS: Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107: 1059–1066 (1995).

    Article  PubMed  Google Scholar 

  18. Huckle JW, Morby AP, Turner JS, Robinson NJ: Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7: 177–187 (1993).

    PubMed  Google Scholar 

  19. Jackson PJ, Unkefer CJ, Doolen JA, Watt K, Robinson NJ: Poly(γ-glutamyl-cysteinyl) glycine: its role in cadmium resistant plant cells. Proc Natl Acad Sci USA 84: 6619–6623 (1987).

    PubMed  Google Scholar 

  20. Kawashima I, Inokuchi Y, Chino M, Kimura M, Shimizu N: Isolation of a gene for a metallothionein-like protein from soybean. Plant Cell Physiol 32: 913–916 (1991).

    Google Scholar 

  21. Kawashima I, Kennedy TD, Chino M, Lane BG: Wheat Ec metallothionein genes. Eur J Biochem 209: 971–976 (1992).

    PubMed  Google Scholar 

  22. Kondo N, Isobe M, Imai K, Goto T: Synthesis of metallothionein-like peptides cadystin A and B occuring in a fission yeast, and their isomers. Agric Biol Chem 19: 71–83 (1985).

    Google Scholar 

  23. Lane B, Kajioka R, Kennedy T: The wheat germ Ec protein is a zinc-containing metallothionein. Biochem Cell Biol 65: 1001–1005 (1987).

    Google Scholar 

  24. Ledger SE, Gardner RC: Cloning and expression of five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var. deliciosa) Plant Mol Biol 25: 877–886 (1994).

    PubMed  Google Scholar 

  25. Martinez E, Bartolome B, de la Cruz F: pACYC184-derived cloning vectors containing the multiple cloning site and lacZa reporter gene of pUC8/9 and pUC18/19 plasmids. Gene 68: 159–162 (1988).

    Article  PubMed  Google Scholar 

  26. May MJ, Hartley MR, Roberts LM, Krieg PA, Osborn RW, Lord JM: Ribosome inactivation by ricin A chain: a sensitive method to assess the activity of wild-type and mutant polypeptides. EMBO J 8: 301–308 (1989).

    PubMed  Google Scholar 

  27. Moisyadi S, Stiles JI: A cDNA encoding a metallothionein I-like protein from coffee leaves (Coffea arabica). Plant Physiol 107: 295–296 (1995).

    Article  PubMed  Google Scholar 

  28. Morby AP, Turner JS, Huckle JW, Robinson NJ: SmtB is a metal-regulated repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn-inhibited DNA-protein complex. Nucl Acids Res 21: 921–925 (1993).

    PubMed  Google Scholar 

  29. Nielson KB, Winge DR: Order of metal binding in metallothionein. J Biol Chem 258: 13063–13069 (1983).

    PubMed  Google Scholar 

  30. Nielson KB, Winge DR: Preferential binding of copper to the β domain of metallothionein. J Biol Chem 259: 4941–4946 (1984).

    PubMed  Google Scholar 

  31. Okumura N, Nishizawa NK, Umehara Y, Mori S: An iron deficiency-specific cDNA from barley roots having two homologous cysteine-rich MT domains. Plant Mol Biol 17: 531–533 (1991).

    PubMed  Google Scholar 

  32. Otsuka F, Iwamatsu A, Suzuki K, Ohsawa M, Hamer DH, Koizumi S: Purification and characterization of a protein that binds to metal responsive elements of the human metallothionein IIA gene. J Biol Chem 269: 23700–23707 (1994).

    PubMed  Google Scholar 

  33. Okumura N, Nishizawa N-K, Umehara Y, Ohata T, Mori S: Iron deficiency specific cDNA (Ids1) with two homologous cysteine rich MT domains from the roots of barley. J Plant Nutr 15: 2157–2172 (1992).

    Google Scholar 

  34. Palmiter RD: Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci USA 91: 1219–1223 (1994).

    PubMed  Google Scholar 

  35. Reese RN, Wagner GJ: Properties of tobacco (Nicotiana tabacum) cadmium binding peptide(s). Biochem J 241: 641–647 (1987).

    PubMed  Google Scholar 

  36. Riordan JF, Vallee BL: Metallobiochemistry partB, mettallothionein and related molecules. Meth Enzymol 205: (1991).

  37. Robinson NJ, Evans IM, Mulcrone J, Bryden J, Tommey AM: Genes with similarity to metallothionein genes and copper, zinc ligands in Pisum sativum L. Plant Soil 146: 291–298 (1992).

    Google Scholar 

  38. Robinson NJ, Tommey AM, Kuske C, Jackson PJ: Plant metallothioneins. Biochem J 295: 1–10 (1993).

    PubMed  Google Scholar 

  39. Robinson NJ, Gupta A, Fordham-Skelton AP, Croy RRD, Whitton BA, Huckle JW: Prokaryotic metallothionein gene characterisation and expression: chromosome crawling by ligation mediated PCR. Proc R Soc Lond B 242: 241–247 (1990).

    PubMed  Google Scholar 

  40. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  41. Shi J, Lindsay WP, Huckle JW, Morby AP, Robinson NJ: Cyanobacterial metallothionein gene expressed in Escherichia coli-metal binding properties of the expressed protein. FEBS Lett 303: 159–163 (1992).

    Article  PubMed  Google Scholar 

  42. Snowden KC, Gardner RC: Five genes induced by aluminium in wheat (Triticum aestivum L.) roots. Plant Physiol 103: 855–861 (1993).

    Article  PubMed  Google Scholar 

  43. Tommey AM, Shi J, Lindsay WP, Urwin PE, Robinson NJ: Expression of the pea gene PsMT A in E. coli: metal-binding properties of the expressed protein. FEBS Lett 292: 48–52 (1991).

    Article  PubMed  Google Scholar 

  44. Turner JS, Morby AP, Whitton BA, Gupta A, Robinson NJ: Construction and characterisation of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. J Biol Chem 268: 4494–4498 (1993).

    PubMed  Google Scholar 

  45. Vallee BL: Implications and inferences of metallothionein structure. In: Kagi JHR, Kojima Y (eds) Metallothionein II, pp. 5–16. Birkhauser-Verlag, Basel (1987).

    Google Scholar 

  46. Vallee BL: Introduction to metallothionein. Meth Enzymol 205: 3–7 (1991).

    PubMed  Google Scholar 

  47. Van der Plas J, Hegeman H, De Vrieze G, Tuyl M, Borrias M, Weisbeek P: Genomic integration system based on pBR322 sequences for the cyanobacterium Synechococcus sp. PCC 7942: transfer of genes encoding plastocyanin and ferrodoxin. Gene 95: 39–48 (1990).

    Article  PubMed  Google Scholar 

  48. Weig A, Komor E: Isolation of a class II metallothionein cDNA (accession no. L02306) from Ricinus communis L. Plant Physiol PGR95-066 (1995).

  49. Zeng J, Heuchel R, Schaffner W, Kägi JHR: Thionein (apometallothionein) can modulate DNA binding and transcription activation by zinc finger containing factor Sp1. FEBS Lett 279: 310–312 (1991).

    Article  PubMed  Google Scholar 

  50. Zeng J, Vallee BL, Kägi JHR: Zinc transfer from transcription factor IIIA fingers to thionein clusters. Proc Natl Acad Sci USA 88: 9984–9988 (1991).

    PubMed  Google Scholar 

  51. Zhou J, Goldsbrough PB: Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6: 875–884 (1994).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, N.J., Wilson, J.R. & Turner, J.S. Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn2+-metallothionein-deficient Synechococcus PCC 7942: putative role for MT2 in Zn2+ metabolism. Plant Mol Biol 30, 1169–1179 (1996). https://doi.org/10.1007/BF00019550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019550

Key words

Navigation