Skip to main content
Log in

Critical assessment of the application of the J-integral and CTOD concepts to circumferentially cracked copper bars

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The aim of this work is to explore experimentally the validity of the concepts of J-integral and crack tip opening displacement for characterizing the stress and strain state at the tip of an axisymmetrical crack in a bar undergoing large plastic strain before crack extension. The tests are made on extruded copper round bars presenting a very high ductility. Three different analytical formulations of the J-integral proposed in the literature for circumferentially cracked bars are compared at initiation of cracking. The limit between shallow crack and deep crack geometries is experimentally demonstrated. It is found that, in neither of these geometries, J and δCTOD are dominant. However, the ratio Jcc is constant for deep cracks, which suggests an alternative fracture criterion consisting in postulating the dissipation of an average critical energy per unit volume until crack extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.L.Stark and R.N.Ibrahim, Engineering Fracture Mechanics 25–4 (1986) 395–401.

    Google Scholar 

  2. H.L.Stark and R.N.Ibrahim, Engineering Fracture Mechanics 30–3 (1988) 409–414.

    Google Scholar 

  3. G. Gage, Tagsi Symposium-Advances in Fracture Mechanics, Abbington, Cambridge (1996).

  4. B.K. Neale, Tagsi Symposium-Advances in Fracture Mechanics, Abbington, Cambridge (1996).

  5. B.K. Neale, The Analytical Fracture Behaviour of a Bar in Tension Containing a Circumferentially Edge Crack, NE Report TEM/REP/0129/94 (1995).

  6. H.C. Bueckner, in Discussion on Stress Analysis of Cracks, by P.C. Paris and G.C. Sih, ASTM STP 381 (1965) 82.

  7. J.R.Rice, ASME Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  8. H. Bergkvist and G.L. Huong, Proceedings of Fracture Mechanics and Technology (Hong Kong) (1977) 1053–1056.

  9. F. Mudry, Etude de la Rupture Ductile et de la Rupture par Clivage d'Aciers Faiblement Alliés, thesis, Université de Technologie de Compiègne (1982).

  10. J.W.Hutchinson, Transactions of the ASME 50 (1983) 1042–1051.

    Google Scholar 

  11. J.R. Rice, P.C. Paris and J.G. Merkle, Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536 (1973) 231–245.

  12. T.Nakamura, C.F.Shih and L.B.Freund, Engineering Fracture Mechanics 22–3 (1985) 437.

    Google Scholar 

  13. A.G. Miller, Review of Limit Loads of Structures Containing Defects, 3rd edn. TPRD/B/0093/N82: Revision 2 (1987).

  14. N.P.O'Dowd and C.F.Shih, Journal of the Mechanics and Physics of Solids 39 (1991) 998–1015.

    Google Scholar 

  15. N.P.O'Dowd and C.F.Shih, Journal of the Mechanics and Physics of Solids 40 (1992) 939–963.

    Google Scholar 

  16. D.M. Parks, Topics in Fracture and Fatigue, A.S. Argon (ed.) Springer-Verlag (1992) 59–98.

  17. C.F.Shih, Tables of Hutchinson-Rice-Rosengren Singular Field Quantities, MRL E 147, Division of Engineering, Brown University, Providence, R.I. (1983).

    Google Scholar 

  18. T.L.Anderson, Fracture Mechanics-Fundamentals and Applications, CRC Press, Boca Raton (1995).

    Google Scholar 

  19. P.W.Bridgman, Studies in Large Plastic Flow and Fracture, in Metallurgy and Metallurgical Engineering series, R.F.Mehl (ed.), McGraw-Hill Book Company, Inc., New York (1952).

    Google Scholar 

  20. J. Duffailly, Modélisation Mécanique et Identification de l'Endommagement Plastique des Métaux, thesis, Université Pierre et Marie Curie-ENSET, Cachan, France (1980).

  21. B.Moran, R.J.Asaro and C.F.Shih, Metallurgical Transactions 22A (1991) 161–170.

    Google Scholar 

  22. R.M. McMeeking and D.M. Parks, ASTM STP 668 (1979) 175–194.

  23. R. Chaouadi, Micromechanically Based Damage Modeling of Crack Initiation in Reactor Materials, thesis, Katholieke Universiteit Leuven and SCK-CEN, Belgium (1995).

  24. R.Chaouadi, P.DeMeester and W.Vandermeulen, International Journal of Fracture 66 (1994) 155–164.

    Google Scholar 

  25. T. Pardoen, J. Morhet, P. Delatte, I. Doghri, R. Knockaert, R. Chaouadi and F. Delannay, Proceedings of the Eleventh European Conference on Fracture (Poitiers), to be published (1996).

  26. K.B.Broberg, Journal of the Mechanics and Physics of Solids 23 (1975) 215–237.

    Google Scholar 

  27. B.Cotterell and J.K.Reddel, International Journal of Fracture 13–3 (1977) 267–277.

    Google Scholar 

  28. A.G.Atkins and Y.W.Mai, Elastic and Plastic Fracture, Ellis Horwood Limited, Chichester, England (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardoen, T., Delannay, F. Critical assessment of the application of the J-integral and CTOD concepts to circumferentially cracked copper bars. Int J Fract 79, 373–391 (1996). https://doi.org/10.1007/BF00018597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018597

Keywords

Navigation