Skip to main content
Log in

A numerical mode I weight function for calculating stress intensity factors of three-dimensional cracked bodies

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A numerical mode I weight function first presented by Parks and Kamenetzky [1] is extended for application to three-dimensional cracked bodies. This weight function makes use of the stiffness derivative method as part of finite element calculations. A virtual crack extension is employed. The major difficulty is proper interpretation of the shape function variation for implementation in three dimensions. Numerical examples in two and three dimensions are examined. Excellent results are obtained in comparison to solutions in the literature, as well as some further finite element studies which are carried out here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Parks and E.M. Kamenetzky, International Journal for Numerical Methods in Engineering 14 (1979) 1693–1706.

    Article  Google Scholar 

  2. H.F. Bueckner, Zeitschrift für Angewandte Mathematik und Mechanik 50 (1970) 529–546.

    Google Scholar 

  3. J.R. Rice, International Journal of Solids and Structures 8 (1972) 751–758.

    Article  Google Scholar 

  4. A.F. GrandtJr., International Journal of Fracture 11 (1975) 283–294.

    Article  Google Scholar 

  5. P.C. Paris, R.M. McMeeking and H. Tada, in ASTM-STP 601, Cracks and Fracture, J.L. Swedlow and M.L. Williams (eds.), Philadelphia (1976) 471–489.

  6. H.J. Petroski and J.D. Achenbach, Engineering Fracture Mechanics 10 (1978) 257–266.

    Article  Google Scholar 

  7. T. Fett and D. Munz, ‘Stress Intensity Factors and Weight Functions for One-Dimensional Cracks’, Report KfK 5290, Institute für Materialforschung, Kernforschungszentrum Karlsruhe, Germany (1994).

    Google Scholar 

  8. Y. Bortman and L. Banks-Sills, Journal of Applied Mechanics 50 (1983) 907–909; Errata 51 (1984) 711.

    Article  Google Scholar 

  9. H.F. Bueckner, in Mechanics of Fracture I: Analysis and Solution of Crack Problems, G.C. Sih (ed.), Noordhoff, Leyden, The Netherlands (1973) 239–314.

    Chapter  Google Scholar 

  10. J.R. Rice, in ASTM-STP 1020, Fracture Mechanics: Twentieth Symposium, R.P. Wei and R.P. Gangloff (eds.), Philadelphia (1989) 29–57.

  11. D.M. Parks, International Journal of Fracture 10 (1974) 487–502.

    Article  Google Scholar 

  12. M.L. Vanderglas, International Journal of Fracture 14 (1978) R291-R294.

    Google Scholar 

  13. G.T. Sha, Engineering Fracture Mechanics 19 (1984) 685–699.

    Article  Google Scholar 

  14. T.-L. Sham, International Journal of Solids and Structures 22 (1987) 1357–1372.

    Article  Google Scholar 

  15. T.-L. Sham and Y. Zhou, International Journal of Fracture 41 (1989) 51–75.

    Article  Google Scholar 

  16. L. Banks-Sills and D. Sherman, International Journal of Fracture 41 (1989) 177–196.

    Article  Google Scholar 

  17. K.J. Bathe, ADINA-Automatic Dynamic Incremental Nonlinear Analysis, Adina, Inc., USA (1987).

    Google Scholar 

  18. M. Isida, International Journal of Fracture 7 (1971) 301–316.

    Google Scholar 

  19. J.C. Newman, ‘An Improved Method of Collocation for the Stress Analysis of Cracked Plates with Various Shaped Boundaries’, NASA TN D-6376 (1971).

  20. H. Tada, P. Paris and G.R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corp., St. Louis, Missouri (1985).

    Google Scholar 

  21. MSC/NASTRAN Version 65 User's Manual, The MacNeal-Schwendler Corp., USA (1985).

  22. J.C. Newman, Jr. and I.S. Raju, ASTM-STP 791, Fracture Mechanics: Fourteenth Symposium, J.C. Lewis and G. Sines (eds.), Philadelphia (1983) I-238–I-265.

  23. F.W. Smith, A.S. Kobayashi and A.E. Emery, Journal of Applied Mechanics 34 (1967) 947–952.

    Article  Google Scholar 

  24. I.S. Raju and J.C. Newman, Jr., ASTM-STP 677, Fracture Mechanics, C.W. Smith (ed.), Philadelphia (1979) 411–430.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banks-Sills, L., Makevet, E. A numerical mode I weight function for calculating stress intensity factors of three-dimensional cracked bodies. Int J Fract 76, 169–191 (1996). https://doi.org/10.1007/BF00018535

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018535

Navigation