Skip to main content
Log in

Finite element computation of the strain energy release rate for kinking of a crack

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The approximate energy release rate for a crack which extends, or “kinks”, away from its original direction has been computed by finite element analysis using three different methods: stiffness derivative procedure, J integral method and crack closure integral procedure. A case study is presented to compare the computational accuracies. It suggests that a satisfactory approximation can be obtained provided that the ratio of kink length to original crack length, l(0)/a⩽0.04, despite the interaction of the crack tip and knee stress singularities.

Résumé

En utilisant trois méthodes différentes (dérivation de la raideur, intégrale J et intégrale de fermeture de la fissure), on a calculé par éléments finis la vitesse approchée de relaxation de l'energie dans le cas d'une fissure qui diverge ou qui part en arborescence par rapport à sa direction initiale.

On présente une étude de cas de manière à comparer les précisions respectives obtenus dans les calculs.

Cette étude suggère qu'une approximation satisfaisante peut être obtenue, pour autant que le rapport de la longueur déviée à la longueur initiale de la fissure soit inférieure ou égale à 0,04, en dépit de l'interaction entre l'extrémité de la fissure et la singularité de la contrainte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Andersson, Journal of the Mechanics and Physics of Solids 17 (1969) 405–417. See also the Erratum, Journal of the Mechanics and Physics of Solids 18 (1970) 437.

    Google Scholar 

  2. A.A. Khrapkov, International Journal of Fracture Mechanics 7 (1971) 373–382.

    Google Scholar 

  3. P. Palaniswamy and W.G. Knauss, International Journal of Fracture 9 (1972) 114–117.

    Google Scholar 

  4. K. Palaniswamy and W.G. Knauss, in Mechanics Today, Vol. 4, Academic Press, N.Y. (1978) 87–148.

    Google Scholar 

  5. M.A. Hussain, S.L. Pu and J. Underwood, in Fracture Analysis, ASTM STP 560 (1974) 2–28.

  6. R.V. Goldstein and R.L. Salganik, International Journal of Fracture 10 (1974) 507–523.

    Google Scholar 

  7. S.N. Chatterjee, International Journal of Solids and Structures 11 (1975) 521–538.

    Google Scholar 

  8. B.A. Bilby and G.E. Cardew, International Journal of Fracture 11 (1975) 708–712.

    Google Scholar 

  9. B.A. Bilby, G.E. Cardew and I.C. Howard, in Advances in Research on the Strength and Fracture of Materials, Proceedings ICF4, Waterloo, Canada, Vol. 3 (1977) 197–200.

  10. H. Kitagawa and R. Yuuki, Proceedings ICF4 (1977) 201–211.

  11. V. Vitek, International Journal of Fracture 13 (1977) 481–501.

    Google Scholar 

  12. K.K. Lo, Transactions of ASME, Journal of Applied Mechanics 45 (1978) 757–802.

    Google Scholar 

  13. B. Cotterell and J.R. Rice, International Journal of Fracture 16 (1980) 155–169.

    Google Scholar 

  14. S. Melin, International Journal of Fracture 30 (1986) 57–65.

    Google Scholar 

  15. S.K. Maiti, International Journal of Fracture 32 (1986) R33-R36.

    Google Scholar 

  16. A.R. Zak and M.L. Williams, Journal of Applid Mechanics 30 (1963) 142–143.

    Google Scholar 

  17. P. Tong and T.H.H. Pian, International Journal of Solids and Structures 9 (1973) 313–321.

    Google Scholar 

  18. R.H. Gallagher, in Proceedings of First Conference on Numerical Methods in Fracture Mechanics, Swansea (1978) 1–25.

  19. D.M. Parks, International Journal of Fracture 10 (1974) 487–502.

    Google Scholar 

  20. J.R. Rice, Transactions ASME, Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  21. E.F. Rybicki and M.F. Kanninen, Engineering Fracture Mechanics 9 (1977) 931–938.

    Google Scholar 

  22. T. Krishnamurthy, T.S. Ramamurthy, K. Vijayakumar and B. Dattaguru, in Proceedings of International Conference on Finite Elements in Computational Mechanics, IIT Bombay, India, (1985) 891–900.

  23. T.S. Ramamurthy, T. Krishnamurthy, K. Badari Narayana, K. Vijayakumar and B. Dattaguru, Mechanics Research Communications 13 (1986) 179–186.

    Google Scholar 

  24. S.K. Mait, Proceedings of Workshop cum Seminar on Delaminations in Composites, India Institute of Science, Bangalore, India (1987) 63–84.

  25. S.K. Maiti, In-plane fracture toughness of unidirectional fibre composites, Closure Report of the Sponsored Project, Mechanical Engineering Department, Indian Institute of Technology, Bombay, (May 1987).

    Google Scholar 

  26. R. Sethuramam and S.K. Maiti, Engineering Fracture Mechanics 30 (1988) 227–231.

    Google Scholar 

  27. M.L. Williams, Transactions ASME, Journal of Applied Mechanics 19 (1952) 526–528. See also “Discussion”, Journal of Applied Mechanics 20 (1953) 590.

    Google Scholar 

  28. K.J. Lau and C.L. Chow, in Proceedings of International Conference on Fracture Mechanics and Technology, Vol. II, Hong Kong, Sijthoff and Noordhoff (1977) 1529–1536.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiti, S.K. Finite element computation of the strain energy release rate for kinking of a crack. Int J Fract 43, 161–174 (1990). https://doi.org/10.1007/BF00018339

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018339

Keywords

Navigation