Skip to main content
Log in

Applications of dynamic fracture mechanics for the prediction of crack arrest in engineering structures

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The compatibility of the static and dynamic approaches to crack propagation and arrest is investigated. For clarity, the term “kinetic” is introduced for analyses that focus on the entire crack initiation/propagation/arrest process — as opposed to static analyses which consider only the end points — as dynamic effects are not always significant in a crack run/arrest event. The importance of integrating experimental and computational work in this field is also discussed and a differentiation is given between the ways in which this can be done. An example computation on a thermal shock problem where dynamic effects are minimal, i.e., where the static and kinetic approaches are nearly the same, and a computation for a DCB specimen where significant differences occur between the two approaches are described. It is concluded that the static and kinetic approaches are entirely compatible as long as reflected stress waves do not reach the crack tip prior to crack arrest. But, when this is not the case, it is the kinetic approach that must be used. Similarly, when inelastic effects are important, only the kinetic approach can properly admit them.

Résumé

On étudie la compatibilité des approches statiques et dynamiques pour la propagation et l'arrêt d'une fissure. Pour des raisons de clarification, le terme “cinétique” est introduit dans une analyse qui couvre l'entièreté du processus d'amorçage, propagation et arrêt d'une fissure, par opposition à l'analyse statique qui ne considère que les points terminals et dans la mesure où les effets dynamiques ne sont pas toujours appréciables dans un processus de course et d'arrêt d'une fissure. On discute également l'importance d'intéger le travail expérimental et le travail par calculs dans ce domaine et l'on établit une différence entre les différentes voies qui peuvent être suivies. A titre d'exemple, on établit le calcul pour un problème de choc termique où les effets dynamiques sont minimes, c'est-à-dire où les approches statiques et cinétiques sont à peu près les mêmes et un calcul pour une éprouvette Cantilever où des différences significatives surviennent entre les deux approches. On conclut que les approches statiques et cinétiques sont entièrement compatibles pour autant que les ondes de contrainte réfléchies n'atteignent pas l'extrémité de la fissure avant que ne se produisent son arrêt. Cependant, comme lorsque cela n'est pas le cas, c'est l'approche cinétique qui doit être utilisée. De même, lorsque les effets inélastiques sont importants, seule l'approche cinétique peut les prendre en compte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford Press, New York (1985) to appear.

    Google Scholar 

  2. G.R. Irwin and A.A. Wells, Metallurgical Reviews 10 (1965) 223–270.

    Google Scholar 

  3. G.I. Barenblatt, Advances in Applied Mechanics 7 (1962) 55–129.

    Google Scholar 

  4. P.B. Crosley and E.J. Ripling, Journal of Basic Engineering 91 (1969) 525–534.

    Google Scholar 

  5. G.T. Hahn, R.G. Hoagland, M.F. Kanninen and A.R. Rosenfield, in Dynamic Crack Propagation, G.C. Sih, Noordhoff, Leiden, The Netherlands (1973) 649–662.

    Google Scholar 

  6. J.F. Kalthoff, J. Beinert and S. Winkler, in Fast Fracture and Crack Arrest, G.T. Hahn and M.F. Kanninen, eds., ASTM STP 627, American Society Testing and Materials, Philadelphia (1977) 161–176.

    Google Scholar 

  7. A.S. Kobayashi, K. Seo, J.Y. Jou and Y. Urabe, Experimental Mechanics 20 (1980) 73–79.

    Google Scholar 

  8. M.F. Kanninen, in Prospects of Fracture Mechanics, G.C. Sih, et al., eds., Noordhoff International Publishing, Leyden, The Netherlands (1974) 251–266.

    Google Scholar 

  9. P.B. Crosley, W.L. Fourney, G.T. Hahn, R.G. Hoagland, G.R. Irwin, and E.J. Ripling, Cooperative Test Program on Crack Arrest Toughness Measurements. NUREG/CR-3261, Nuclear Regulatory Commission, Washington, D.C. April (1983).

    Google Scholar 

  10. A.J. Rosakis, J. Duffy and L.B. Freund, in Workshop on Dynamic Fracture, California Institute of Technology, W.G. Knauss et al., eds., Pasadena, California (1983) 110–118.

  11. M.F. Kanninen, International Journal of Fracture 10 (1974) 415–430.

    Google Scholar 

  12. J.E. Srawley and B. Gross, Materials Research and Standards 7 (1967) 155–162.

    Google Scholar 

  13. W.B. Fichter, International Journal of Fracture 22 (1983) 133–143.

    Google Scholar 

  14. W.A. Maxey, R.J. Eiber, R.J. Podlasek and A.R. Duffy, in Crack Propagation in Pipelines, Institute of Gas Engineers, London (1974).

    Google Scholar 

  15. M.F. Kanninen, International Journal of Fracture 6 (1970) RCR 94–95.

    Google Scholar 

  16. M.F. Kanninen, S.G. Sampath and C.H. Popelar, Journal of Pressure Vessel Technology 98 (1976) 56–65.

    Google Scholar 

  17. J. Jung and M.F. Kanninen, Journal of Pressure Vessel Technology (1983) 111–116.

  18. R.D. Cheverton, O.A. Canonico, S.K. Iskander, S.E. Bolt, P.P. Holtz, R.K. Nanstad and W.J. Stelzman, Journal of Pressure Vessel Technology 105 (1983) 102–110.

    Google Scholar 

  19. M.F. Kanninen, J. Ahmad, V. Papaspyropoulos, S.J. Hudak and J.W. FitzGerald, in International Conference on Dynamic Fracture Mechanics, San Antonio, Texas, 7–9 November 1984.

  20. J.F. Kalthoff, in Workshop on Dynamic Fracture, W.G. Knauss et al., eds. California Institute of Technology (1983) 11–35.

  21. L.B. Freund and A.S. Douglas, Journal of the Mechanics and Physics of Solids (1982) 59–74.

  22. M.F. Kanninen, Journal of the Mechanics and Physics of Solids 16 (1968) 215–228.

    Google Scholar 

  23. J.D. Achenbach, M.F. Kanninen and C.H. Popelar, Journal of the Mechanics and Physics of Solids 29 (1981) 211–225.

    Google Scholar 

  24. V. Dantam and G.T. Hahn, in Fracture Tolerance Evaluation, T. Kanazawa, A.S. Kobayashi, and K. Iida, eds., Toyoprint Co. Ltd., Japan (1982).

    Google Scholar 

  25. J. Ahmad, J. Jung, C.R. Barnes, and M.F. Kanninen, Engineering Fracture Mechanics 17 (1983) 235–246.

    Google Scholar 

  26. J. Aboudi and J.D. Achenbach, Engineering Fracture Mechanics 18 (1983) 109–119.

    Google Scholar 

  27. B. Brickstad, Journal of the Mechanics and Physics of Solids 31 (1983) 307–327.

    Google Scholar 

  28. S.J. Hudak, K. Chan, K. Reed, J.H. FitzGerald, M.F. Kanninen, and J.D. Achenbach, in International Conference on Dynamic Fracture Mechanics, San Antonio, Texas, 7–9 November 1984.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanninen, M.F. Applications of dynamic fracture mechanics for the prediction of crack arrest in engineering structures. Int J Fract 27, 299–312 (1985). https://doi.org/10.1007/BF00017974

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017974

Keywords

Navigation