Skip to main content
Log in

Damage zones based on Dugdale model for materials

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper, an infinite sheet with a crack is studied using continuum damage mechanics technique. The formulation is based on the hypothesis of incremental complementary energy equivalence model for damage evaluation. Damage distributions in the region of a macrocrack tip are calculated for an elastic-perfectly plastic material. The size of the damage zone is also derived via the Dugdale model with damage which considers the interactions between the macrocracks and microcracks. To assess the results, comparisons are made between proposed damage model, Dugdale plastic model and finite element solutions. Good agreement is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Giovanola and I. Finnie, SM Archives 9 (1984) 197–225 and 227–247.

    Google Scholar 

  2. C.L. Chow and T.J. Lu, International Journal of Fracture 53 (1992) 43–75.

    Google Scholar 

  3. L.M. Kachanov, Izvestiya Akadamii Nauk USSR Otd. Tekh. 8 (1958) 26–31.

    Google Scholar 

  4. J.L. Chaboche, Revue France. Mechanique 50–51 (1974).

  5. J. Wang, Engineering Fracture Mechanics 41 (1992) 437–441.

    Google Scholar 

  6. J. Lemaitre and J.L. Chaboche, Proceedings of IUTAM, Symposium on Mechanics of Viscoelastic Media and Bodies (1975) 291–301.

  7. W.A. Trampczynski, D.R. Hayhurst and F.A. Leckie, Journal of the Mechanics and Physics of Solids 29 (1981) 353–374.

    Google Scholar 

  8. W.H. Tai and B.X. Yang, Engineering Fracture Mechanics 25 (1986) 377–384.

    Google Scholar 

  9. J. Lemaitre, Journal of Engineering Materials and Technology 107 (1985) 83–89.

    Google Scholar 

  10. D.S. Dugdale, Journal of the Mechanics and Physics of Solids 8 (1960) 100–104.

    Google Scholar 

  11. J. Janson, Engineering Fracture Mechanics 9 (1977) 890–899.

    Google Scholar 

  12. S. Wu, Y. Mai and B. Cotterell, International Journal of Fracture 57 (1992) 253–267.

    Google Scholar 

  13. B. Budiansky and J.W. Hutchinson, ASME Journal of Applied Mechanics 45 (1978) 267–275.

    Google Scholar 

  14. J.R. Rice, in Proceedings of International Conference on Fracture, Sendai, Japan, Vol. I (1965) 283–308.

  15. W.H. Tai, Engineering Fracture Mechanics 37 (1990) 853–880.

    Google Scholar 

  16. A. Luo, Y. Mou and R.P.S. Han, International Journal of Fracture (1993) in press.

  17. R.P.S. Han and Y. Mou, 14th CANCAM, Kingston, Ontario (1993).

  18. J. Lemaitre and J.L. Chaboche, Journal of Mecanique Appliquee, 2 (1978) 317–365.

    Google Scholar 

  19. C.L. Chow and J. Wang, International Journal of Fracture 33 (1987) 3–16.

    Google Scholar 

  20. J.P. Cordebois and F. Sidoroff, J. Mec. Theor. Appl. Numero. Special (1980) 45–60.

  21. D.P. Rooke and F.J. Bradshaw, Proceedings of the 2nd International Conference of Fracture, Brighton, U.K. (1969) 45–57.

  22. H.M. Westergaard, ASME Journal of Applied Mechanics 6 (1939) A49-A53.

    Google Scholar 

  23. G.R. Irwin, ASME Journal of Applied Mechanics 24 (1957) 361–364.

    Google Scholar 

  24. B. Budiansky and R.J. O'Connell, International Journal of Solids and Structures 12 (1976) 81–97.

    Google Scholar 

  25. D.E. Grady and M.E. Kipp, International Journal of Rock Mechanics, Mineral Science and Geomechanics Abstracts 17 (1980) 147–157.

    Google Scholar 

  26. J.C. Jeager and N.G.W. Cook, Fundamentals of Rock Mechanics, Chapman & Hall, New York (1969).

    Google Scholar 

  27. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover Publications Inc., New York (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mou, Y., Han, R.P. Damage zones based on Dugdale model for materials. Int J Fract 68, 245–259 (1994). https://doi.org/10.1007/BF00013070

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00013070

Keywords

Navigation