Skip to main content
Log in

A 3-D approach to the calculation of the energy release rate in some fracture problems

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A 3-D ellipsoidal flaw model is sufficiently versatile to cover a wide variety of flaw shapes: existing 2-D flaw models are special cases. The energy release rate from an ellipsoidal flaw in an infinite medium may be calculated by both a ‘strain method’ and a ‘displacement method’. Solution techniques for both tension and compression are presented. The results calculated by both methods are in excellent agreement with available explicit results. The simpler and more efficient strain method is preferred in the calculation of the energy release rate for various flaws, except for line cracks and flat cracks subject to tensile stress normal to the crack plane. The 3-D formulation has considerable promise for providing understanding of the effects of various parameters on the energy release rate under triaxial stress states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Sack, The Proceedings of the Physical Society 58 (1946) 729–736.

    Google Scholar 

  2. B.J. Carter, E.Z. Lajtai and Y. Yuan, International Journal of Fracture 57 (1992) 221–236.

    Google Scholar 

  3. S.A.F. Murrell, British Journal of Applied Physics 15 (1964) 1195–1223.

    Google Scholar 

  4. G.C. Sih and H. Liebowitz, in Fracture, II, Academic Press, New York (1968) 68–190.

    Google Scholar 

  5. T.W. Lee and I.R. Grosse, Engineering Fracture Mechanics 44 (1993) 807–819.

    Google Scholar 

  6. T. Fett, Engineering Fracture Mechanics 32 (1989) 731–737.

    Google Scholar 

  7. G.H. Sohn and C.S. Hong, Engineering Fracture Mechanics 41 (1992) 177–190.

    Google Scholar 

  8. T.K. Hellen, International Journal for Numerical Methods in Engineering 9 (1975) 187–207.

    Google Scholar 

  9. H.G. DeLorenzi, Engineering Fracture Mechanics 21 (1985) 129–143.

    Google Scholar 

  10. E. Smith, International Journal of Fracture Mechanics 7 (1971) 339–342.

    Google Scholar 

  11. P.S. Theocaris, Engineering Fracture Mechanics 33 (1989) 205–214.

    Google Scholar 

  12. N.K. Hatzitrifon and E.E. Gdoutos, International Journal of Engineering Sciences 26 (1988) 833–836.

    Google Scholar 

  13. S.A.F. Murrell and P.J. Digby, Geophysical Journal (Royal Astronomical Society) 19 (1970) 309–334.

    Google Scholar 

  14. M.A. Sadowsky and E. Stemberg, Journal of Applied Mechanics 16 (1949) 149–157.

    Google Scholar 

  15. M. El-Rahman, Ph.D. thesis, The University of Calgary, Calgary (1989).

    Google Scholar 

  16. E.Z. Wang and N.G. Shrive, Engineering Fracture Mechanics 46 (1993) 15–26.

    Google Scholar 

  17. K. Robinson, Journal of Applied Physics 22 (1951) 1045–1054.

    Google Scholar 

  18. P.L. Key, International Journal of Fracture Mechanics 5 (1969) 287–296.

    Google Scholar 

  19. K. Palaniswamy and W.G. Knauss, in Mechanics Today, 4, Pergamon Press Inc., New York (1978) 87–148.

    Google Scholar 

  20. G.R. Irwin, Journal of Applied Mechanics 29 (1962) 651–654.

    Google Scholar 

  21. L. Mirandy and B. Paul, Journal of Engineering Materials and Technology 98 (1976) 164–172.

    Google Scholar 

  22. D.M. Parks, International Journal of Fracture 10 (1974) 487–502.

    Google Scholar 

  23. T.N. Farris and M. Liu, International Journal of Fracture 60 (1993) 33–47.

    Google Scholar 

  24. H. Liebowitz and E.T. MoyerJr, Computers & Structures 31 (1989) 1–9.

    Google Scholar 

  25. F.Z. Li, C.F. Shih and A. Needleman, Engineering Fracture Mechanics 21 (1985) 405–421.

    Google Scholar 

  26. P.W. Claydon, Engineering Fracture Mechanics 42 (1992) 961–969.

    Google Scholar 

  27. A. Bakker, International Journal of Fracture 23 (1983) R85–R90.

    Google Scholar 

  28. T.A. Cruse and G.J. Meyers, Journal of the Structural Division 103 (1977) 309–320.

    Google Scholar 

  29. H.G. DeLorenzi, International Journal of Fracture 19 (1982) 183–193.

    Google Scholar 

  30. J.R. Rice and D.C. Drucker, International Journal of Fracture mechanics 3 (1967) 19–27.

    Google Scholar 

  31. J.D. Eshelby, Proceedings of the Royal Society (London) A241 (1957) 376–396.

    Google Scholar 

  32. J.R. Rice, in Fracture, II, Academic Press, New York (1968) 191–313.

    Google Scholar 

  33. S.A.F. Murrell and P.J. Digby, International Journal of Fracture Mechanics 8 (1972) 167–173.

    Google Scholar 

  34. G.C. Sih and H. Liebowitz, International Journal of Solids and Structures 3 (1967) 1–22.

    Google Scholar 

  35. J. Glucklich, Journal of the Engineering Mechanics Division 89 (1963) 127–138.

    Google Scholar 

  36. A.E. Green and I.N. Sneddon, Proceedings of Cambridge Philosophical Society 46 (1950) 159–164.

    Google Scholar 

  37. M.K. Kassir and G.C. Sih, International Journal of Engineering Sciences 5 (1967) 899–918.

    Google Scholar 

  38. F. Erdogan and G.C. Sih, Journal of Basic Engineering 85 (1963) 519–525.

    Google Scholar 

  39. C.H. Wu, Journal of Elasticity 8 (1978) 235–257.

    Google Scholar 

  40. M. El-Rahman, M.Sci. thesis, The University of Calgary, Calgary (1983).

    Google Scholar 

  41. D.J. Holcomb, in Geomechanics, AMD/57, New York (1983) 11–21.

  42. U. Diederichs, U. Schneider and M. Terrien, in Fracture Mechanics of Concrete, Elsevier, Amsterdam (1983) 157–206.

    Google Scholar 

  43. L.S. Costin, Journal of Geophysical Research 88 (1983) 9485–9492.

    Google Scholar 

  44. G.R. Holzhausen and A.M. Johnson, International Journal of Rock Mechanics and Mining Sciences 16 (1979) 163–177.

    Google Scholar 

  45. N.P. Bazant and J. Ozbolt, Journal of the Engineering Mechanics Division 118 (1992) 540–556.

    Google Scholar 

  46. N.G. Shrive and M. El-Rahman, Concrete International 7 (1985) 39–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, E.Z., Shrive, N.G. A 3-D approach to the calculation of the energy release rate in some fracture problems. Int J Fract 66, 71–89 (1994). https://doi.org/10.1007/BF00012636

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00012636

Keywords

Navigation