Skip to main content
Log in

The steady state fracture kinetics of crack front spreading

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The kinetics study is based on the energetically favourable crack propagation mechanism of double kink nucleation and its subsequent sideways spreading. The analysis was carried out on linearly elastic solids for the case when kink spreading is the rate controlling mechanism. The kink spread distribution is described by a differential equation that is identical with the mass and heat transport equations. The solutions of the differential equation represent the distribution function and the crack propagation velocity as a function of the bond breaking energy ΔG, the work W contributed by the applied stress, and of the temperature. When W≫ΔG/2 the crack velocity increases exponentially with increasing work, decreases steeply with decreasing work, and reduces to zero when W≈ΔG/2. The theory represents well the behavior of ceramic materials and some metals in Region 1 and at the threshold region of stress corrosion cracking. It is of special interest for stress corrosion cracking designs that the threshold stress intensity is independent of the temperature under the conditions of the present investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Williams, International Journal of Fracture Mechanics 1 (1965) 292–310.

    Google Scholar 

  2. W.G. Knauss, Proceedings of the First International Conference on Fractures, Vol. 2 (1965) 1139.

    Google Scholar 

  3. S.D. Brown, American Ceramic Society Bulletin 55 (1976) 395.

    Google Scholar 

  4. S.N. Zhurkov, International Journal of Fracture Mechanics 1 (1965) 311–323.

    Google Scholar 

  5. Takeo Yokobori, Kolloid-Zeitschrift 166 (1959) 20.

    Google Scholar 

  6. A.S. Krausz, International Journal of Fracture 12 (1976) 239–242.

    Google Scholar 

  7. S.M. Wiederhorn, in Fracture Mechanics of Ceramics, Vol. 4 R.C. Bradt, D.P.H. Hasselman and F.F. Lange, editors, Plenum Press, New York-London (1978).

    Google Scholar 

  8. A. Kelly, Strong Solids, Clarendon Press, Oxford, England (1966).

    Google Scholar 

  9. A.S. Krausz, International Journal of Fracture 15 (1979) 337–342.

    Google Scholar 

  10. A.A. Griffith, Philosophical Transactions of the Royal Society, London, A221 (1920) 163.

    Google Scholar 

  11. G.R. Irwin, Encyclopedia of Physics, Vol. VI, Springer Verlag, Heidelberg (1958).

    Google Scholar 

  12. B.R. Lawn, Journal of Materials Science 10 (1975) 469.

    Google Scholar 

  13. D. Broek, Elementary Engineering Fracture Mechanics, Nordhoff, Groningen (1974).

    Google Scholar 

  14. A.S. Tetelman and A.J. McEvilyJr., Fracture of Structural Materials, Wiley, New York (1967).

    Google Scholar 

  15. F.A. McClintock, A.S. Argon, Mechanical Behaviour of Materials, Addison-Wesley, Reading, Mass. (1966).

    Google Scholar 

  16. F.A. McClintock, G.R. Irwin, in Fracture Toughness Testing and its Applications, ASTM Spec. Tech. Pub. No 381 (1965).

  17. B.R. Lawn and T.R. Wilshaw, Fracture of Brittle Solids, Cambridge University Press, Cambridge, England (1975).

    Google Scholar 

  18. W.R. Tyson, H.M. Cekirge and A.S. Krausz, Journal of Materials Science 11 (1976) 780.

    Google Scholar 

  19. M.V. Swain, B.R. Lawn, International Journal of Fracture Mechanics 9 (1973) RCR 481–483.

    Google Scholar 

  20. H.M. Cekirge, W.R. Tyson and A.S. Krausz, Journal of the American Ceramic Society 58 (1973) 192.

    Google Scholar 

  21. S.M. Wiederhorn, H. Johnson, Journal of the American Ceramic Society 56 (1973) 192.

    Google Scholar 

  22. S.M. Wiederhorn, L.H. Bolz, Journal of the American Ceramic Society 53 (1970) 543.

    Google Scholar 

  23. J.W. Obreimoff, Proceedings of the Royal Society, London, A 127 (1930) 290.

    Google Scholar 

  24. S.M. Wiederhorn, B.J. Hockey, D.E. Roberts, Philosophical Magazine 28 (1973) 783.

    Google Scholar 

  25. S.M. Wiederhorn, Private Communication.

  26. M.F. Kanninen, P.C. Gehlen, International Journal of Fracture 7 (1971) RCR 471–474.

    Google Scholar 

  27. M.F. Kanninen, P.C. Gehlen, in Interatomic Potentials and Simulation of Lattice Defects, P.C. Gehlen et al. editors, Plenum Press, New York-London (1972).

    Google Scholar 

  28. A.S. Krausz and H. Eyring, Deformation Kinetics, Wiley-Interscience, New York (1975).

    Google Scholar 

  29. R. Thomson, C. Hsieh and R. Rana, Journal of Applied Physics 42 (1971) 3145.

    Google Scholar 

  30. A.S. Krausz, Journal of Physics and Chemistry of Solids 40 (1979) 351.

    Google Scholar 

  31. S.D. Brown, Proceedings of the Sixth Canadian Congress on Applied Mechanics, Vancouver, B.C. (1977).

  32. A.S. Krausz, 18th International Conference of Metallurgy, Sudbury, Ont. (1979).

  33. A.S. Krausz, Journal of Applied Physics 49 (1978) 3774.

    Google Scholar 

  34. J. Lothe and J.P. Hirth, Physics Review 115 (1959) 543.

    Google Scholar 

  35. H.A. Kramers, Physika 7 (1940) 284.

    Google Scholar 

  36. I. Prigognine, G. Nicolis and P.M. Allen, in Chemical Dynamics, J.O. Hirschfelder and D. Henderson, editors, Wiley-Interscience, New York (1971).

  37. A.G. Evans and M. Linzer, Journal of the American Ceramic Society 56 (1973) 575.

    Google Scholar 

  38. A.S. Krausz, International Journal of Fracture 14 (1978) 5–15.

    Google Scholar 

  39. A.S. Krausz, Journal of Engineering Fracture Mechanics 11 (1979) 33.

    Google Scholar 

  40. S.D. Brown, in Environmental Effects on Engineering Materials, M.R. LouthanJr., and R.P. McNitt, editors, Virginia Polytechnic Institute, Blacksburg, Va. (1977).

  41. S.D. Brown, in Fracture Mechanics of Ceramics, Vol. 4, R.C. Bradt, Dr. P.H. Hasselman and F.F. Lange, editors, Plenum Press, New York (1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krausz, A.S., Mshana, J. The steady state fracture kinetics of crack front spreading. Int J Fract 19, 277–293 (1982). https://doi.org/10.1007/BF00012484

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00012484

Keywords

Navigation