Skip to main content
Log in

A model for crack-face bridging

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A novel model for crack-face bridging is addressed. The model successfully makes analytical predictions for the compliance changes of crack-face bridging systems during crack extension as well as recutting crack-face bridges developed after crack extension. Numerical results of the model are compared with those derived from the boundary element analysis where several possible profiles of the distribution of crack-face bridging tractions are examined. An experimental application of the model to the crack-face fiber bridging of a laminal carbon-fiber/carbon-matrix composite is attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.L. Swanson, C.J. Fairbanks, B.R. Lawn and Y.W. Mai,Journal of American Ceramics Society 70(4) (1987) 279–289.

    Google Scholar 

  2. Y.M. Mai,Material Forum 11 (1988) 232–267.

    Google Scholar 

  3. A.G. Evans,Journal of American Ceramics Society 73(2) (1990) 187–206.

    Google Scholar 

  4. E.H. Lutz and N. Claussen,Journal of American Ceramics Society 74(1) (1991) 11–18.

    Google Scholar 

  5. M. Sakai,Journal of The Ceramics Society of Japan 99(10) (1991) 983–992.

    Google Scholar 

  6. B. Cotterell and Y.W. Mai,Advances in Cement Research 1(2) (1988) 75–83.

    Google Scholar 

  7. C.H. Hsueh and P.F. Becher,Journal of American Ceramics Society 71(5) (1988) C234-C237.

    Google Scholar 

  8. P.F. Becher, C.H. Hsueh, P.A. Angelini and T.N. Tiegs,Journal of American Ceramics Society 71(12) (1988) 1050–1061.

    Google Scholar 

  9. A. Reichl and R.W. Steinbrech,Journal of American Ceramics Society 71(6) (1988) C299-C301.

    Google Scholar 

  10. M. Sakai, T. Miyajima and M. Inagaki,Composite Science and Technology 40 (1991) 231–250.

    Google Scholar 

  11. T. Miyajima and M. Sakai,Journal of Materials Research 6(3) (1991) 539–547.

    Google Scholar 

  12. R.W. Steinbrech, F. Deuerler, A. Reichl and W. Schaarwächter,Science of Ceramics 14 (1987) 659–664.

    Google Scholar 

  13. D.B. Marshall, B.N. Cox and A.G. Evans,Acta Metallurgica 33 (1985) 2013–2021.

    Google Scholar 

  14. D.B. Marshall and A.G. Evans,Fracture Mechanics of Ceramics, 7 (1986) 1–15.

    Google Scholar 

  15. R.W. Steinbrech, A. Reichl and W. Schaarwächter,Journal of American Ceramics Society 73(7) (1990) 2009–2015.

    Google Scholar 

  16. B. Cotterell and Y.W. Mai,Materials Forum 11 (1988) 341–351.

    Google Scholar 

  17. E.H. Lutz and M. Sakai,Journal of American Ceramics Society, 76 (1993) 3113–3122.

    Google Scholar 

  18. J. Avenston, G.A. Cooper and A. Kelly, inThe Properties of Fiber Composites, NPL-Conference Proceedings, IPC Science and Technology Press, Guildford, U.K. (1971) 15–26.

    Google Scholar 

  19. T. Suzuki, M. Sato and M. Sakai,Journal of Materials Research 7(10) (1992) 2869–2875.

    Google Scholar 

  20. D. Broek,Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers (1987) 77–80.

  21. R.A. Schapery,International Journal of Fracture 11(1) (1975) 141–159.

    Google Scholar 

  22. P.F. Becher,Journal of American Ceramics Society 74(2) (1991) 255–269.

    Google Scholar 

  23. R.M.L. Foote, Y.W. Mai and B. Cotterell,Journal of The Mechanics and Physics of Solids 34(6) (1986) 593–607.

    Google Scholar 

  24. B. Cotterell and Y.M. Mai,Journal of Materials Science 22 (1987) 2734–2738.

    Google Scholar 

  25. R. Ballarini, S.P. Shah and L.M. Keer,Engineering Fracture Mechanics 20(3) (1984) 433–445.

    Google Scholar 

  26. B.N. Cox and D.B. Marshall,International Journal of Fracture 49 (1991) 159–176.

    Google Scholar 

  27. B.N. Cox and D.B. Marshall,Acta Metallurgica et Materialia 39(4) (1991) 579–589.

    Google Scholar 

  28. B.N. Cox,Acta Metallurgica et Materialia 39(6) (1991) 1189–1201.

    Google Scholar 

  29. B.N. Cox and C.S. Lo,Acta Metallurgica et Materialia 40(1) (1992) 69–80.

    Google Scholar 

  30. Z. Suo, G. Bao and B. Fan,Journal of Mechanics and Physics of Solids 40(1) (1992) 1–16.

    Google Scholar 

  31. C.K.Y. Leung and V.C. Li,Journal of Mechanics and Physics of Solids 40(6) (1992) 1333–1362.

    Google Scholar 

  32. C-H. Hsueh and P. Becher,Composites Engineering 1(3) (1991) 129–143.

    Google Scholar 

  33. T. Fett,Journal of American Ceramics Society, to be published.

  34. R. Ballarini,International Journal of Fracture 31 (1986) R63-R67.

    Google Scholar 

  35. C.C. Yang, T. Mura and S.P. Shah,Journal of Materials Research, 6(11) (1991) 2463–2473.

    Google Scholar 

  36. M. Sakai,ISIJ International 32(8) (1992) 937–942.

    Google Scholar 

  37. X. Hu and F.H. Wittmann,Journal of Materials in Civil Engineering 2(1) (1990) 15–23.

    Google Scholar 

  38. F.H. Wittmann and X. Hu,International Journal of Fracture 51 (1991) 3–18.

    Google Scholar 

  39. X. Hu, E.H. Lutz and M.V. Swain,Journal of American Ceramics Society 74(8) (1991) 1828–1832.

    Google Scholar 

  40. R. Knehans and R. Steinbrech,Journal of Materials Science, Letters 1 (1982) 327–329.

    Google Scholar 

  41. R.W. Steinbrech, E. Inghels and A.H. Heuer,Journal of American Ceramics Society 73(7) (1990) 2016–2022.

    Google Scholar 

  42. J.I. Bluhm,Engineering Fracture Mechanics 7(3) (1975) 593–604.

    Google Scholar 

  43. M. Sakai and K. Yamasaki,Journal of American Ceramics Society 66(5) (1983) 371–375.

    Google Scholar 

  44. A. Saxena and S.J. Hudak, Jr.,International Journal of Fracture 14(5) (1978) 453–468.

    Google Scholar 

  45. Stress Intensity Factors Handbook, Vol. 1, Y. Murakami (ed.), Pergamon, Oxford (1987) 18–20.

  46. L.N. McCartney,Proceedings of the Royal Society of London A409 (1987) 329–350.

    Google Scholar 

  47. A. Kelly,Proceedings of the Royal Society of London A319 (1970) 95–116.

    Google Scholar 

  48. M. Sutcu,Acta Metallurgica 37(2) (1989) 651–661.

    Google Scholar 

  49. T. Miyajima and M. Sakai,Fracture Mechanics of Ceramics 9 (1992) 83–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Sakai, M. A model for crack-face bridging. Int J Fract 65, 329–344 (1994). https://doi.org/10.1007/BF00012372

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00012372

Keywords

Navigation