Skip to main content
Log in

Elastic-plastic analysis of a stationary crack under cyclic loading and effect of overload

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A recently proposed elastoplastic constitutive model has been implemented in a finite element code to study crack front behaviour under variable loading. The importance of proper modelling of a material's behaviour becomes evident when a variable loading condition is considered. We present stress, strain and displacement distribution along a stationary crack front for constant amplitude cyclic loading with an overload cycle. The analysis predicts a decreased tensile stress and damage accumulation following an overload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Ellyin, Theoretical and Applied Fracture Mechanics 4 (1985) 83–96.

    Google Scholar 

  2. D. Kujawski and F. Ellyin, International Journal of Fracture 36 (1988) 137–144.

    Google Scholar 

  3. M.A. Eisenberg, Journal of Engineering Materials and Technology, ASME 98 (1976) 221–228.

    Google Scholar 

  4. J.L. Chaboche, et al., Transactions 5th SMiRT, L11/3 Berlin (1979).

  5. D.C. Drucker and L. Palgen, Journal of Applied Mechanics, ASME 48 (1981) 479–485.

    Google Scholar 

  6. Z. Mroz, Acta Mechanica 7 (1967) 199–212.

    Google Scholar 

  7. Y.F. Dafalias and E.P. Popov, Journal of Applied Mechanics, ASME 43 (1976) 645–651.

    Google Scholar 

  8. D.L. McDowell, Journal of Applied Mechanics, ASME 52 (1985) 308–398.

    Google Scholar 

  9. A. Phillips, International Journal of Plasticity 2 (1986) 315–328.

    Google Scholar 

  10. F. Ellyin and J. Wu, in A Description of Elasto-Plastic Behaviour Based on Memory and Yield Surface in Plane Stress State, C.S. Desai (eds.), Elsevier, New York (1987) 531–538.

    Google Scholar 

  11. F. Ellyin, Journal of Applied Mechanics, ASME 111 (1989) 499–507.

    Google Scholar 

  12. F. Ellyin and Z. Xia, in Elastoplastic Stress-Strain Relation Based on a New Anisotropic Hardening Model, EGF 5, J.P. Boehler (ed.), Mechanical Engineering Publ., London (1990) 155–169.

    Google Scholar 

  13. F. Ellyin and Z. Xia, Journal of Mechanics and Physics of Solids 37 (1989) 71–91.

    Google Scholar 

  14. Z. Xia and Z. Ellyin, Journal of Applied Mechanics, ASME 58 (1991) 317–325.

    Google Scholar 

  15. D.M. Tracey, Journal of Engineering Materials and Technology, ASME 98 (1976) 146–151.

    Google Scholar 

  16. R.M. McMeeking, Journal of the Mechanics and Physics of Solids 25 (1977) 357–381.

    Google Scholar 

  17. A. Needleman and C.F. Shih, Computer Methods in Applied Mechanics and Engineering 15 (1978) 223–240.

    Google Scholar 

  18. C.F. Shih and M.D. German, International Journal of Fracture Mechanics 17 (1981) 27–43.

    Google Scholar 

  19. R. Narasimhan and A.J. Rosakis, Journal of Mechanics and Physics of Solids 36 (1988) 77–117.

    Google Scholar 

  20. K.J. Bathe, (ed.), Journal of Computers and Structures 21 No. 1/2 (1985).

  21. R.W. Landgraf, J. Morrow and T. Endo, Journal of Materials, ASTM 4, No. 1 (1969) 176–188.

    Google Scholar 

  22. V.B. WatwoodJr., Nuclear Engineering and Design 11 (1969) 323–332.

    Google Scholar 

  23. D.N. Fenner, Engineering Stress Analysis, Ellis Norwood Ltd., Chichester, England (1987).

    Google Scholar 

  24. N.A. Fleck, Engineering Fracture Mechanics 25 (1986) 441–449.

    Google Scholar 

  25. A.T. Zehnder and A.J. Rosakis, International Journal of Fracture 30 (1986) R43-R48.

    Google Scholar 

  26. J.R. Rice, in Fracture, H. Liebowitz (ed.), Vol. 2, Mathematical Fundamentals, Academic Press, New York (1968) 191–311.

    Google Scholar 

  27. G.R. Irwin, in Fracture, Encyclopaedia of Physics, S. Fluge (ed.), Springer Verlag, Berlin (1958) 551–589.

    Google Scholar 

  28. D.L. Davidson and J. Lankford, Journal of Engineering Materials and Technology 98 (1976) 24–29.

    Google Scholar 

  29. N.A. Fleck, in Basic Questions in Fatigue, Vol. I, J.T. Fong and R.J. Fields (eds.), ASTM STP 924, Philadelphia, PA (1988) 157–183.

  30. F. Ellyin, Res Mechanica 25 (1988) 1–25.

    Google Scholar 

  31. K. Golos and F. Ellyin, Journal of Pressure Vessel Technology, ASME 110 (1988) 36–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellyin, F., Wu, J. Elastic-plastic analysis of a stationary crack under cyclic loading and effect of overload. Int J Fract 56, 189–208 (1992). https://doi.org/10.1007/BF00012327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00012327

Keywords

Navigation