Skip to main content
Log in

Development and ecological importance of phytoplankton in a large lowland river (River Meuse, Belgium)

  • Contributions from the workshop
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The ecological importance of the River Meuse phytoplankton with regard to carbon and nutrient transport has been examined in two reaches of the Belgian course of the river.

Field measurements of total particulate organic carbon (POC), particulate organic nitrogen (PON) and particulate phosphorus (PP) show that the large autochtonous production of organic matter strongly affects the carbon and nutrient budget of the aquatic system. During the growing season, phytoplankton accounts for nearly 60% of the POC and dominates the PON. Calculations of the carbon and oxygen budget in the upper reach of the Belgian Meuse demonstrates that the ecosystem is autotrophic, i.e. that autochtonous FPOM (fine particulate organic matter) production is the major carbon input. This suggests that in large lowland rivers, primary production (P) may exceed community respiration (R), i.e. P:R>1, whereas they are assumed to be heterotrophic (P:R<1) in the River Continuum concept.

The question of maintenance of phytoplankton in turbid mixed water columns is also addressed, and the case of the River Meuse is treated on the basis of studies of photosynthesis and respiration (ETS measurements). The results suggest that the potamoplankton may show some low-light acclimation, through an increase of chlorophyll a relative to biomass, when it comes to deep downstream reaches, and that algal respiration rate may be reduced. A simulation of the longitudinal development of the algal biomass shows the different phases of algal growth and decline along the river and brings support to the ‘importation hypothesis’ for explaining maintenance of potamoplankton in the downstream reaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Admiraal, W., D. M. Jacobs, P. Breugem & E. D. de Ruyter van Steveninck, 1992. Effects of phytoplankton on the elemental composition (C, N, P) of suspended particulate material in the lower River Rhine. Hydrobiologia 235–236: 479–489.

    Google Scholar 

  • Billen, G., J.-P. Descy, P.Servais & J. S. Smitz, 1985. Etude écologique de la haute Meuse et modélisation du fonctionnement de l'écosystème aquatique. Rapport final, Ministère de la Région Wallonne pour l'eau, l'environnement et la vie rurale, 250 pp.

  • Billen. G.. J. Garnier & Ph. Hanset, 1994. Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER Model applied to the Seine river system. Hydrobiologia 289: 119–137.

    Google Scholar 

  • Christensen, J. P. & T. T. Packard, 1979. Respiratory electron transport activities in phytoplankton and bacteria: Comparison of methods. Limnol. Oceanogr. 24: 576–583.

    Google Scholar 

  • Cole, J. J., N. F. Caraco & B. Peierls, 1991. Phytoplankton primary production in the tidal, freshwater Hudson River, New York (USA). Verh. int. Ver. Limnol. 24: 1715–1719.

    Google Scholar 

  • Cole, J. J., N. F. Caraco & B. Peierls, 1992. Can phytoplankton maintain a positive balance in a turbid, freshwater, tidal estuary? Limnol. Oceanogr. 37: 1608–1617.

    Google Scholar 

  • Coveney, M. F., G. Cronberg, M. Enell, K. Larsson & L. Olofson, 1977. Phytoplankton, zooplankton and bacteria-standing crop relationships in a eutrophic lake. Oikos 29: 5–21.

    Google Scholar 

  • Daneri, G., A. Iriarte, V. M. Garcia, D. A. Purdie & D. W. Crawford, 1992. Growth irradiance as a factor controlling the dark respiration rates of marine phytoplankton. J. mar. biol. Ass. U.K. 72: 723–726.

    Google Scholar 

  • Descy, J.-P., 1987. Phytoplankton composition and dynamics in the River Meuse (Belgium). Arch. Hydrobiol., suppl. 78, Algol. Stud. 47: 225–245.

    Google Scholar 

  • Descy, J.-P., 1992. Eutrophication in the River Meuse. In D. W. Suttcliffe & J. G. Jones (eds), Eutrophication: research and application to water supply. Freshwater Biological Association, Ambleside: 132–142.

    Google Scholar 

  • Descy, J.-P., 1993. Ecology of the phytoplankton of the River Moselle: effects of disturbances on community structure and diversity. Hydrobiologia 249: 111–116.

    Google Scholar 

  • Descy, J.-P., E. Everbecq & J. S. Smitz, 1988. Primary production in the River Meuse (Belgium). Verh. int. Ver. Limnol. 23: 1287–1293.

    Google Scholar 

  • Descy, J.-P., P. Servais, J. S. Smitz, G. Billen & E. Everbecq, 1987. Phytoplankton biomass and production in the river Meuse (Belgium). Wat. Res. 21: 1557–1566.

    Google Scholar 

  • Descy, J.-P., V. Gosselain & F. Evrard, in press. Photosynthesis and respiration of river phytoplankton. Verh. int. Ver. Limnol. 25.

  • Devol, A. H. & T. T. Packard, 1978. Seasonal changes in respiratory enzyme activity and productivity in Lake Washington microplankton. Limnol. Oceanogr. 23: 104–111.

    Google Scholar 

  • Falkowski, P. G. & J. LaRoche, 1991. Acclimation to spectral irradiance in algae. J. Phycol. 27: 8–14.

    Google Scholar 

  • Gallegos, C. L. & T. Platt, 1982. Phytoplankton production and water motion in surface mixed layers. Deep-Sea Res. 29: 65–76.

    Google Scholar 

  • Gosselain V., J.-P. Descy & E. Everberg, 1994. The phytoplankton community of the River Meuse, Belgium: seasonal dynamics (year 1992) and the possible incidence of zooplankton grazing. Hydrobiologia 289: 179–191.

    Google Scholar 

  • Harris, G. P., 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Arch. Hydrobiol. Beih., Ergebn. Limnol. 10, 171 pp.

  • Imboden, D. M., 1992. The impact of physical processes on algal growth. In D. W. Sutcliffe & J. G. Jones (eds.), Eutrophication: Research and application to water supply. Freshwater Biological Association, Ambleside: 30–43.

    Google Scholar 

  • Kirk, T. O. J., 1983. Light and photosynthesis in aquatic ecosystems. Cambridge Univ. Press, Cambridge, 401 pp.

    Google Scholar 

  • Lara-Lara, J. R., B. E. Frey & L. F. Small, 1990. Primary production in the Columbia River estuary. I. Spatial and temporal variability of properties. Pacific Science 44: 17–37.

    Google Scholar 

  • Loehr, J., 1987. Impact of the hydrodynamic conditions on the primary production in an impounded river. Ecological Modelling 39: 227–245.

    Google Scholar 

  • MacIntyre, S., 1993. Vertical mixing in a shallow, eutrophic lake: Possible consequences for the light climate of phytoplankton. Limnol. Oceanogr. 38: 798–817.

    Google Scholar 

  • Mallin, M. A. & H. W. Paerl, 1992. Effects of variable irradiance on phytoplankton productivity in shallow estuaries. Limnol. Oceanogr. 37: 54–62.

    Google Scholar 

  • Meybeck, M., 1993. C, N, P and S in rivers: from sources to global inputs. In R. Wollast, F. T. Mackenzie & L. Chou (eds.), Interactions of C, N, P and S Biogeochemical Cycles and Global Change. NATO ASI series 14, Springer Verlag, Berlin: 163–193.

    Google Scholar 

  • Meybeck, M., G. Cauwet, S. Dessery, M. Somville, D. Gouleau & G. Billen, 1988. Nutrients (Organic C, P, N, Si) in the eutrophic River Loire (France) and its estuary. Estuar. Coast. Shelf Sci. 27: 595–624.

    Google Scholar 

  • Packard, T. T., 1985. Measurement of electron transport activity of microplankton. Adv. aquat. Microbiol. 3: 207–261.

    Google Scholar 

  • Péchar, L., 1987. Use of acetone: methanol mixture for extraction and spectrophotometric determination of chlorophyll a in phytoplankton. Arch. Hydrobiol. Suppl. 78, Algol. Stud. 46: 99–117.

    Google Scholar 

  • Pourriot, R., J. Capblancq, P. Champ & J. A. Meyer, 1982. Ecologie du Plancton des Eaux Continentales. Masson, Paris, 198 pp.

    Google Scholar 

  • Rai, H., 1984. Size-dependent respiratory-enzyme activity and primary production of microplankton in Schöhsee (a North German Baltic lake). Arch. Hydrobiol. 102: 239–253.

    Google Scholar 

  • Rai, H., 1988. Activity of respiratory electron transport system (ETS) in different size particles as a measure of carbon losses from primary producers. Verh. int. Ver. Limnol. 23: 617–625.

    Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 pp.

    Google Scholar 

  • Reynolds, C. S., 1989. Potamoplankton: paradigms, paradoxes and prognoses. In F. E. Round (ed.), Algae and the Aquatic Environment. Biopress Ltd., Bristol: 285–311.

    Google Scholar 

  • Reynolds, C. S., 1992. 9: Algae. In P. Calow & G. E. Petts (eds.), The Rivers Handbook. Hydrological and Ecological Principles. Blackwell Scient. Publ., Oxford: 195–215.

    Google Scholar 

  • Reynolds, C. S., P. A. Carling & K. J. Beven, 1991. Flow in river channels: new insights into hydraulic retention. Arch. Hydrobiol. 121: 171–179.

    Google Scholar 

  • Reynolds, C. S. & M. S. Glaister, 1993. Spatial and temporal changes in phytoplankton abundance in the upper and middle reaches of the River Severn. Arch. Hydrobiol. suppl. 101, Large Rivers 9: 1–22.

    Google Scholar 

  • Reynolds, C. S., G. P. Harris & D. N. Gouldney, 1985. Comparison of carbon-specific growth rates and rates of cellular increase of phytoplankton in large limnetic enclosures. J. Plankton Res. 7: 791–820.

    Google Scholar 

  • Reynolds, C. S., M. L. White, R. T. Clarke & A. F. Marker, 1990. Suspension and settlement of particles in flowing water: comparison of the effects of varying water depth and velocity in circulating channels. Freshwater Biol. 24: 23–34.

    Google Scholar 

  • Riemann, B., P. Simonsen & L. Stensgaard, 1989. The carbon and chlorophyll content of phytoplankton from various nutrient regimes. J. Plankton Res. 11: 1037–1045.

    Google Scholar 

  • Straskraba, M. & A. Gnauck, 1985. Freshwater ecosystems modelling and simulation. Developments in Ecological Modelling 8, Elsevier, Amsterdam, 309 pp.

    Google Scholar 

  • Stoyneva, M. P., 1994. Shallows of the lower Danube as additional sources of potamoplankton. Hydrobiologia 289: 171–178.

    Google Scholar 

  • Vannote, R. L., 1981. The River Continuum: a theoretical construct for analysis of river ecosystems. Proceedings of the national symposium of freshwater inflow to estuaries, Fish & Wildlife Service, U.S. Department of the Interior, 289–304.

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The River Continuum concept. Can. J. Fish. aquat. Sci. 37: 130–137.

    Google Scholar 

  • Vollenweider, R. A., 1965. Calculation models of photosynthesis-depth curves and some implications regarding day rate estimates in primary production measurements. Mem. Ist. ital. Idrobiol. suppl. 18: 425–457.

    Google Scholar 

  • Vollenweider, R. A., 1974. A Manual on Methods for Measuring Primary Production in Aquatic Environments. IBP Handbook 12, Blackwell Scientific Publications, Oxford, 225 pp.

    Google Scholar 

  • Welch, P. S., 1952. Limnology. Mc Graw Hill Book Cy, NY, 538 pp.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. 2d ed., Saunders Coll. Publ., Philadelphia, 767 pp.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1979. Limnological analyses. Saunders Coll. Publ., Philadelphia, 357 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Descy, JP., Gosselain, V. Development and ecological importance of phytoplankton in a large lowland river (River Meuse, Belgium). Hydrobiologia 289, 139–155 (1994). https://doi.org/10.1007/BF00007415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007415

Key words:

Navigation