Skip to main content
Log in

Effects of the burrowing mayfly, Hexagenia, on nitrogen and sulfur fractions in lake sediment microcosms

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Effects of the burrowing mayfly, Hexagenia, on nitrogen and sulfur fractions of sediment, and overlying water were determined. Laboratory microcosms were used to reproduce the benthic environment. The activities of Hexagenia increased sediment Eh (1.98 ± 0.486 (22) mV · day −1), and decreased pH in sediment (−0.007 ± 0.001 (22) day −1) and overlying water(-0.024 ± 0.004 (10) day−1). In the control, Eh decreased and pH did not change. The presence of Hexagenia also markedly increased ammonia in sediment (5.46 ± 0.14 (22) ppm N · day−1) and overlying water (0.792 ± 0.154 (10) ppm N · day−1), while the control did not change. In addition, the sulfate fraction of sediment (0.177 ± 0.006 (17)% dry mass) and water (50.0 ± 4.9 (5) mg · I−1) in microcosms with Hexagenia was greater than that of the control (0.151 ± 0.005 (16)% dry mass; 14.7 ± 1.71 (3) mg · 1−1) at the termination of the experiment. Hexagenia may also stimulate the mineralization of carbon-bonded sulfur. The general role of Hexagenia in altering sediment chemistry is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, S. E. (.), 1974. Chemical Analysis of Ecological Material. John Wiley, New York. 565 p.

    Google Scholar 

  • Aller, R. C. & Yingst, J. Y., 1978. Biogeochemistry of tubedwellings: A study of the sedentary polychaete Amphitrite ornata (Leidy). J. mar. Res. 36: 201–254.

    CAS  Google Scholar 

  • Anderson, J. M., 1977. Importance of the denitrification process for the rate of degradation of organic matter in lake sediments. In: Golterman, H. L. (ed.) Interactions between Sediments and Freshwater. Junk, The Hague, and Centerfor Agricultural Publishing and Documentation, Wageningen.

    Google Scholar 

  • Anderson, J. M. & MacFadyen, A. (eds.), 1976. The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell Scientific Publications, Oxford. 474 p.

    Google Scholar 

  • Chatarpaul, L., Robinson, J. B. & Kaushik, N. K., 1979. Role of tubificid worms on nitrogen transformations in stream sediment. Can. J. Fish. aquat. Sci. 36: 573–678.

    Google Scholar 

  • Chatarpaul, L., Robinson, J. B. & Kaushik, N. K., 1980. Effects of tubificid worms on denitrification and nitrification in stream sediment. Can. J. Fish. aquat. Sci. 37: 656–663.

    CAS  Google Scholar 

  • Chen, R. L., Keeney, D. R., Graetz, D. A. & Holding, A. J., 1972. Denitrification and nitrate reduction in Wisconsin lake sediments. J. Environ. Qual. 1: 158–162.

    CAS  Google Scholar 

  • Davis, R. B., 1974. Tubificids alter profiles of redox potential and pH in profundal lake sediment. Limnol. Oceanogr. 19 342–346.

    Google Scholar 

  • Edmunds, G. F., Jr., Jensen, S. J. & Berner, L., 1976. The Mayflies of North and Central America. University of Minnesota Press, Minneapolis. 330 p.

    Google Scholar 

  • Edwards, R. W., 1958. The effect of larvae of Chironomus riparius Meigen on the redox potentials of settled activated sludge. Ann. appl. Biol. 46: 457–464.

    Article  CAS  Google Scholar 

  • Fremling, C. R., 1967. Methods for mass rearing Hexagenia mayflies. Trans. Am. Fish. Soc. 96: 407–410.

    Article  Google Scholar 

  • Graneli, W., 1979. The influence of Chironomus plumosus larvae on the oxygen uptake of sediment. Arch. Hydrobiol. 87: 385–403.

    Google Scholar 

  • Hargrave, B. T., 1976. The central role of feces in sediment decomposition. In: Anderson, J. M. & MacFadyen, A. (eds.) The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell Scientific Publications, Oxford, 474 p.

    Google Scholar 

  • Hill, A. R., 1979. Denitrification in the nitrogen budget of a river ecosystem. Nature 281: 291–292.

    Article  CAS  Google Scholar 

  • Hornor, S. G., Waugh, J. H. & Mitchell, M. J., 1980. Sulfur transformations in oxygen-limited systems: soils, sediments and sludges. In: Dindal, D. L. (ed.) Soil Biology as Related to Land Use Practice. USEPA, EPA 560/ 13-86-038,: Washington, D.C.

  • Johnson, D. W. & Henderson, G. S., 1979. Sulfate adsorption and sulfur fractions in a highly-weathered soil under a mixed deciduous forest. Soil Sci. 128: 34–40.

    Article  CAS  Google Scholar 

  • Keeney, D. R., 1973. The nitrogen cycle in sediment-water systems. J. Environ. Qual. 2: 15–28.

    CAS  Google Scholar 

  • King, G. M. & Klug, M. J., 1980. Sulfhydrolase activity in sediments of Wintergreen Lake, Kalamazoo County, Michigan. Appl. Environ. Microbiol. 39: 950–956.

    PubMed  CAS  Google Scholar 

  • Kitchell, J. F., O'Neill, R. V., Webb, D., Gallep, G. W., Bartell, S. M., Koonce, J. F. & Ausmus, B. S., 1979. Consumer regulation of nutrient cycling. Bioscience 29: 28–34.

    Article  Google Scholar 

  • Krezoski, J. R., Mozley, S. C. & Robbins, J. A., 1978. Influence of benthic macroinvertebrates on mixing of profundal sediments in southeastern Lake Huron. Limnol. Oceanogr. 23: 1011–1016.

    Article  Google Scholar 

  • Likens, G. E., Borman, F. G., Eaton, J. S., Pierce, R. S. & Johnson, N. M., 1976. Hydrogen ion input in the Hubbard Brook Experimental Forest, New Hampshire, during the last decade. Water Air Soil. Pollut. 6: 435–445.

    Article  CAS  Google Scholar 

  • Mitchell, M. J., Hartenstein, R., Swift, B. I., Neuhauser, E. F., Abrams, B. I., Mulligan, R. M.., Brown, B. A., Craig, D. & Kaplan, D., 1978. Effects of different sewage sludges on some chemical and biological characteristics of soil. J. Environ. Qual. 7: 551–559.

    CAS  Google Scholar 

  • Mitchell, M. J., Hornor, S. G. & Abrams, B. I., 1980. Decomposition of sewage sludge drying beds and the potential role of the earthworm, Eisenia foetida. J. Environ. Qual. 9: 373–378.

    Article  Google Scholar 

  • Mitchell, M. J., Landers, D. H. & Brodowski, D. F., 1981. Sulfur constituents of sediments and their relationship to lake acidification. Water Air Soil Poll 16: 177–186.

    Article  Google Scholar 

  • Petr, T., 1977. Bioturbation and exchange of chemicals in the mud-water interface. In: Golterman, H. L. (ed.) Interactions between Sediments and Fresh Water. Junk, The Hague, and Center for Agricultural Publishing and Documentation, Wageningen

    Google Scholar 

  • Steinbergs, A. O., Freney, J. R. & Barrow, N. J., 1972. Determination of total sulfur in soil and plant material. Analyt. chim. Acta 27: 158–164.

    Google Scholar 

  • Sternglanz, P. D. & Kollig, H., 1962. Evaluation of an automatic nitrogen analyzer for tractable and refractory compounds. Analyt. Chem. 34: 544–547.

    Article  CAS  Google Scholar 

  • Stuiver, M., 1967. The sulfur cycle in lake waters during thermal stratification. Geochim. Cosmochim. Acta 31: 2151–2167.

    Article  CAS  Google Scholar 

  • Waugh, J. H. & Mitchell, M. J., 1981. Effect of the earthworm, Eisenia foetida, on sulfur speciation and decomposition in sewage sludge. Pedobiologia 22: 268–275.

    CAS  Google Scholar 

  • Wetzel, R., 1975. Limnology. W. B. Saunders, Philadelphia. 743 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, G.B., Mitchell, M.J. & Landers, D.H. Effects of the burrowing mayfly, Hexagenia, on nitrogen and sulfur fractions in lake sediment microcosms. Hydrobiologia 87, 273–283 (1982). https://doi.org/10.1007/BF00007235

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007235

Keywords

Navigation