Skip to main content
Log in

Microbial decomposition of reed (Phragmites communis) leaves in a saline lake

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Microbial colonization and its relation to the decomposition of reed (Phragmites communis) leaf litter were studied in the littoral area of a saline lake from autumn to summer using litter bag method. There was considerable fungal population on the leaves at the beginning of submergence. These fungi were probably terrestrial in origin. The fungal population rapidly disappeared few days after submergence, when bacteria, including cellulolytic and xylanolytic types, proliferated. Associated with this rapid colonization of bacteria, decomposition rates of cellulose and xylan increased. The rates declined from day 39 to day 100 with decreasing water temperature, though cellulolytic and xylanolytic bacteria maintained a sizeable population until day 150. A community of cellulolytic and xylanolytic fungi increased steeply after day 150. It coincided with a second increase in decomposition rate. These results suggest that the principal decomposers of reed leaf litter were bacteria in the initial phase and fungi in the later phase of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaronson, S., 1970. Experimental microbial ecology. Academic Press, New York. 236 pp.

    Google Scholar 

  • Allen, S. E., H. M. Grimshaw, J. A. Parkinson & C. Quarmby, 1974. Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford. 565 pp.

    Google Scholar 

  • Apinis, A. E., C. G. C. Chesters & H. K. Taligoola, 1972. Colonisation of Phragmites communis leaves by fungi. Nova Hedwigia 23: 113–124.

    Google Scholar 

  • Bärlocher, F. & B.Kendrick, 1974. Dynamics of the fungal population on leaves in a stream. J. Ecol. 62: 761–791.

    Google Scholar 

  • Berrie, A. D., 1976. Detritus, microorganisms and animals in fresh-water. In J. M. Anderon & A. McFayden (eds.), The role of terrestrial and aquatic organisms in the decompositional processes. Blackwell Scientific Publications, Oxford: 323–338.

    Google Scholar 

  • Federle, T. W. & J. R.Vestal, 1980. Microbial colonization and decomposition of Carex litter in an arctic lake. Appl. Environ. Microbiol. 39: 888–893.

    Google Scholar 

  • Federle, T. W. & J. R. Vestal, 1982. Evidence of microbial succession on decaying leaf litter in an arctic lake. Can. J. Microbiol. 28: 686–695.

    Google Scholar 

  • Fenchel, T. M. & B. B. Jorgensen, 1977. Detritus food chains of aquatic ecosystems: the role of bacteria. Adv. Microb. Ecol. 1: 1–57

    Google Scholar 

  • Fujisawa, H., M. Murakami, M. Hamada & H. Sera, 1967. Studies on xylan-decomposing bacteria in the marine environment-I. Methods of isolation and enumeration of aerobic β-1,4′-xylan-decomposing bacteria. (in Japanese) Bull. Jap. Soc. Sci. Fish. 33: 438–447.

    Google Scholar 

  • Furota, T., 1980. Seasonal variation of phytoplankton standing stocks in temperate embayments. (in Japanese) Bull. Plank. Soc. Jap. 27: 63–73.

    Google Scholar 

  • Hodkinson, I. D., 1975. Dry weight loss and chemical changes in vascular plant litter of terrestrial origin, occurring in a beaver pond ecosystem. J. Ecol. 63: 131–142.

    Google Scholar 

  • Kadota, H., 1956. A study on the marine aerobic cellulose-decomposing bacteria. Mem. Coll. Agr. Kyoto Univ. 74: 1–128.

    Google Scholar 

  • Kaushik, N. K. & H. B. N. Hynes, 1971. The fate of the dead leaves that fall into streams. Arch. Hydrobiol. 68: 465–515.

    Google Scholar 

  • Mason, C. F. & R. J. Bryant, 1975. Production, nutrient content and decomposition of Phragmites communis Trin. and Typha angustifolia L. J. Ecol. 63: 71–95.

    Google Scholar 

  • Morrison, S. J., J. D. King, R. J. Bobbie, R. E. Bechtold & D. C. White, 1977. Evidence for microfloral succession on allochthonous plant litter in Apalachicola Bay, Florida, USA. Mar. Biol. 41: 229–240.

    Google Scholar 

  • Odum, E. P. & A. A. de la Cruz, 1967. Particulate organic detritus in a Georgia salt-marsh-estuarine ecosystem. In G. H. Lauff (ed.), Estuaries. American Association for the Advancement of Science, Washington, D.C.: 383–388.

    Google Scholar 

  • Oláh, J., 1972. Leaching, colonization and stabilization during detritus formation. In U. Melchiorri-Santolini & J. W. Hopton. (eds.) Mem. Ist. Ital. Idrobiol. 29 Suppl.: 105–127.

  • Olson, F. C. W., 1950. Quantitative estimates of filamentous algae. Trans. am. Micr. Soc. 59: 272–279.

    Google Scholar 

  • Oppenheimer, C. H. & C. E. ZoBell, 1952. The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J. mar. Res. 11: 10–18.

    Google Scholar 

  • Park, D., 1972. Methods of detecting fungi in organic detritus in water. Trans. Br. mycol. Soc. 58: 281–290.

    Google Scholar 

  • Polunin, N. V. C., 1982. Processes contributing to the decay of reed (Phragmites australis) litter in fresh water. Arch. Hydrobiol. 94: 182–209.

    Google Scholar 

  • Reese, E. T., 1977. Degradation of polymeric carbohydrates by microbial enzymes. Rec. Adv. Phytochem. 11: 311–365.

    Google Scholar 

  • Sørensen, H., 1957. Microbial decomposition of xylan. Acta Agric. Scand. Suppl. 1: 1–86.

    Google Scholar 

  • Suberkropp, K. F. & M. J. Klug, 1974. Decomposition of deciduous leaf litter in a woodland stream I. A scanning electron microscopic study. Microb. Ecol. 1: 96–103.

    Google Scholar 

  • Suberkropp, K. & M. J.Klug, 1976. Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology 57: 707–719.

    Google Scholar 

  • Taligoola, T. K., A. E. Apinis & C. G. C. Chesters, 1972. Microfungi colonizing collapsed aerial parts of Phragmites communis. Trin. in water. Nova Hedwigia 23: 465–472.

    Google Scholar 

  • Tanaka, Y. & Y. Tezuka, 1982. Dynamics of detritus-attached and free-living bacteria during decomposition of Phragmites communis powder in seawater. Jap. J. Ecol. 32: 151–158.

    Google Scholar 

  • Teal, J. M., 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43: 614–624.

    Google Scholar 

  • Tubaki, K., 1974. Taxonomy and distribution of marine fungi. (in Japanese) In N. Taga (ed.), Marine Microorganism. University of Tokyo Press, Tokyo: 65–81.

    Google Scholar 

  • Waksman, S. A. & F. G. Tenney, 1927. The composition of natural organic materials and their decomposition in the soil: I. Methods of quantitative analysis of plant materials. Soil Sci. 24: 275–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, Y. Microbial decomposition of reed (Phragmites communis) leaves in a saline lake. Hydrobiologia 220, 119–129 (1991). https://doi.org/10.1007/BF00006544

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006544

Key words

Navigation