Skip to main content
Log in

Influence of the pH and redox potential on phosphate activity in the Parana Medio system

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effect of redox potential and pH on the phosphate mobility in two sediments were investigated using both consolidated and suspended sediments from the area where the Parana Medio long reservoir (Atgentina) is to be built (Smirnov, 1984). In addition to direct chemical sediment analysis, extraction techniques were carried out with a stepwise NH4Cl-NaOH-HCl shaking method, the latter supposedly separating the weakly bound, the Fe- and Al- bound and the Ca- bound phosphates in the sediments.

Phosphate released into water depends upon redox potential and pH, which both were modified in an experimental setup. The source of the phosphate was the fraction of Fe and/or Al bound phosphate present both in the sediment and in the suspended solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cm:

centimeter

km:

kilometer

gg:

gram

l:

liter

¬m:

micrometer

°C:

grade centigrades

km2 :

square kilometer

m.s−1 :

meter per second

m3.s−1 :

cubic meter per second

mg.1‐1 :

miligram per liter

References

  • Ahlgren, I., 1980. A dilution model applied to a system of shallow eutrophic lakes after diversion of sewage effluents. Arch. Hydrobiol. 89: 17–32.

    Google Scholar 

  • Bates, M. & N. Neafus, 1980. Phosphorus release from sediments from Lake Carl Blackwell, Oklahoma. Wat. Res. 14: 1477–1481.

    Google Scholar 

  • Bostrom, B., M. Jansson & C. Forsberg,1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. 18: 6–54.

    Google Scholar 

  • Bostrom, B., 1984. Potential mobiligy of Phosphorus in Lake Sediment. Hydrobiol. 69: 457–474.

    Google Scholar 

  • Chang, S. C. & M. L. Jackson, 1957. Fractionation of soil phosphorus. Soil Sci. 84: 133–144.

    Google Scholar 

  • De Groot, C. J. & H. L. Golterman, 1990. Sequential fractionation of sediment phosphate. Hydrobiologia 192: 143–148.

    Google Scholar 

  • Depetris, P. J. & A. M. Lenardon, 1982. Particulate and Dissolved Phases in the Parana River. Mitt. Geol. 5: 385–395.

    Google Scholar 

  • Groterman, H. L., 1988. The calcium- and iron bound phosphate phase diagram.Hydrobiologia 159: 149–151.

    Google Scholar 

  • Grobbelaar, J. V., 1983. Availability to algae of N and P adsorbed on suspended solids in turbid waters of the Amazon River. Arch. Hydrioiol. 96: 302–316.

    Google Scholar 

  • Harrison, M. J., R. W. Pacha & R. Y. Morita, 1972. Solubilization of inorganic phosphate by bacteria isolated from Upper Klemath lake sediment. Limnol. Oceanogr. 17: 50–57.

    Google Scholar 

  • Hieltjes, A. H. M. & L. Lijklema, 1980. Fractionation of inorganic phosphates in calcareous sediments. J. envir. Qual. 9: 405–407.

    Google Scholar 

  • Kamp-Nielsen, L., 1974. Mud-water exchange of phosphates and other ions in undisturbed sediments cores and factors affecting the exchange rates. Arch. Hydrobiol. 73: 218–237.

    Google Scholar 

  • Lijklema, L., 1977. The role of iron in the exchange of phosphate between water and sediments. In: H. L. Golterman (ed.), Interactions between sediments and fresh water: 313–317. Dr W. Junk, The Hague.

    Google Scholar 

  • Lorenzen, M. W., 1974. Predicting the effects of nutrient diversion on lake recovery. In: E. J. Middlebrooks, D. H. Falkenborg & T. E. Maloney (eds), Modeling the Eutrophication Process. pp. 205–210. Ann Arbor Science Publishers, Ann Arbor.

    Google Scholar 

  • Murphy, J. & J. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31–36.

    Google Scholar 

  • Ohle, W., 1937.Kolloidgele als Nahrstoffregulanten der Gewassen Naturwissenschaften. 25: 471–474.

    Google Scholar 

  • Ohle, 1964. Interstitiallosung der sediments, Nahrstoffgehalt des phytoplanktons in seen. Helgol. Wiss Meeresunters. 10: 411–429.

    Google Scholar 

  • Smirnov, N. N., 1984. Attempt at ecological prognosis of plankton in the man-made lake ‘Parana Medio (Chapeton transect)’, Argentina, Hydrobiol. 113: 159–163.

    Google Scholar 

  • Sridharan, N. & G. F. Lee, 1974. Phosphorus studies in lower Green Bay Lake Michigan. J. Wat. Pollut. control. Fed. 46: 684–696.

    Google Scholar 

  • Standard Methods for the examination of water and Wastewater, 1975. 14th Edition American Public Health Association.

  • Stumm, W. & J. J. Morgan, 1970. Aquatic Chemistry, Wiley-Interscience New York.

    Google Scholar 

  • Vollenweider, R.AA., 1975. Input-Output models. Schweiz. T. Hydrol. 37: 53–84.

    Google Scholar 

  • Welch, E. B., C. A. Rock, J. D. Krull, 1974. Long-term lake recovery related to available phosphorus. In: E. J. Middlebrooks, D. H. Falkenborg and T. E. Maloney (eds), Modeling the Eutrophication Process. pp. 5–13. Ann Arbor Science Publishers, Ann Arbor.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maine, M.A., Hammerly, J.A., Leguizamon, M.S. et al. Influence of the pH and redox potential on phosphate activity in the Parana Medio system. Hydrobiologia 228, 83–90 (1992). https://doi.org/10.1007/BF00006479

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006479

Key words

Navigation