Skip to main content
Log in

Diel cycles inHoplosternum littorale (Teleostei): entrainment of feeding activity by low intensity colored light

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Low intensity colored light is very often used to observe or manipulate fish during the scotophase. According to data on fish vision, most species can perceive these wavelengths of light since their cone pigments have maximum absorption peaks around 455, 530 and 625 nm. To test whetherHoplosternum littorale can detect low intensity red or blue light, we attempted to entrain feeding activity, known to be nocturnal and synchronized by the circadian light/dark alternation, to such light. Feeding activity was entrained with either red or blue light, indicating that these fish can perceive these lights. In all cases, the fish fed during the darker phase of the light cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Ali, M.A. 1964. Diurnal rhythm in the rates of oxygen consumption, locomotor and feeding activity of yearling Atlantic salmon (Salmo salar) under various light conditions. Proc. Indian Acad. Sci. B 60: 249–263.

    Google Scholar 

  • Allen, D.M. & R.D. Fernald. 1985. Spectral sensitivity of the African cichlid fish,Haplochromis burtoni. J. Comp. Physiol. (A) 157: 247–253.

    Article  Google Scholar 

  • Avery, J.A., J.K. Bowmaker, M.B.A. Djamgoz & J.E.G. Downing. 1982. Ultra-violet sensitive receptors in a freshwater fish. J. Physiol. 334: 23P–24P.

    Google Scholar 

  • Bachman, R.A., W.W. Reynolds & M.E. Casterlin. 1979. Diel locomotor activity patterns of wild brown trout (Salmo trutta L.) in an electronic shuttlebox. Hydrobiologia 66: 45–47.

    Article  Google Scholar 

  • Beauchamp, R.D. & J.S. Rowe. 1977. Goldfish spectral sensitivity: a conditioned heart rate measure in restrained or curarized fish. Vision Res. 17: 617–624.

    Article  PubMed  Google Scholar 

  • Beauchamp, R.D., J.S. Rowe & L.A. O'Reilly. 1979. Goldfish spectral sensitivity: identification of the three cone mechanisms in heart-rate conditioned fish using colored adapting backgrounds. Vision Res. 19: 1295–1302.

    Article  PubMed  Google Scholar 

  • Bell, D.M. 1982. Physiological and psychophysical spectral sensitivities of the cichlid fish,Hemichromis bimaculatus. J. Exp. Zool. 223: 29–32.

    Article  Google Scholar 

  • Boujard, T. & J.F. Leatherland. 1992a. Demand-feeding behaviour and diel pattern of feeding activity inOnchorhynchus mykiss held under different photoperiod regimes. J. Fish Biol. [in press].

  • Boujard, T. & J.F. Leatherland. 1992b. Circadian rhythms and feeding time in fishes. Env. Biol. Fish. 35: 109–131.

    Article  Google Scholar 

  • Boujard, T., P.-Y. Le Bail & P. Planquette. 1988. Données biologiques sur quelques espèces continentales de Guyane Française d'intért piscicole. Aquat. Living Resour. 1: 107–113.

    Google Scholar 

  • Boujard, T., P. Keith & P. Luquet. 1990. Diel cycle inHoplosternum littorale (Teleostei): evidence for synchronization of locomotor, air breathing and feeding activity by circadian alternation of light and dark. J. Fish Biol. 36: 133–140.

    Google Scholar 

  • Boujard, T., Y. Moreau & P. Luquet. 1991. Entrainment of the circadian rhythm of food demand by infradian cycles of light/ dark alternation inHoplosternum littorale (Teleostei). Aquat. Living Resour. 4: 221–225.

    Google Scholar 

  • Cameron, N.E. 1982. The photopic spectral sensitivity of a dichromatic teleost fish (Perca fluviatilis). Vision Res. 22: 1341–1348.

    Article  PubMed  Google Scholar 

  • Carter, G.S. & L.C. Beadle. 1931. The fauna of the swamps of the paraguayan chaco in relation to its environment. II. Respiratory adaptations in the fishes. J. Linn. Soc. Lond. Zool. 37: 327–368.

    Google Scholar 

  • Chaston, I. 1968. Influence of light on activity of brown trout (Salmo trutta). J. Fish. Res. Board Can. 25: 1285–1289.

    Google Scholar 

  • Cronley-Dillon, J.R. & W.R.A. Muntz. 1965. The spectral sensitivity of the goldfish and the clawed toad tadpole under photopic conditions. J. Exp. Biol. 42: 481–493.

    PubMed  Google Scholar 

  • Dill, P.A. 1971. Perception of polarized light by yearling sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Board Can. 28: 1319–1322.

    Google Scholar 

  • Douglas, R.H. 1983. Spectral sensitivity of rainbow trout (Salmo gairdneri). Rev. Can. Biol. Exp. 42: 117–122.

    PubMed  Google Scholar 

  • Douglas, R.H. 1986. Photopic spectral sensitivity of a teleost fish, the roach (Rutilus rutilus), with special reference to its ultraviolet sensitivity. J. Comp. Physiol. (A) 159: 415–421.

    Article  Google Scholar 

  • Eriksson, L.-O. & T. VanVeen. 1980. Circadian rhythms in the brown bulhead,Ictalurus nebulosus (Teleostei). Evidence for an endogenous rhythm in feeding, locomotor, and reaction time behaviour. Can. J. Zool. 58: 1899–1907.

    Google Scholar 

  • Fernald, R.D. & P.A. Liebman. 1980. Visual receptor pigments in the African cichlid fish,Haplochromis burtoni. Vision Res. 20: 857–864.

    Article  PubMed  Google Scholar 

  • Gibson, R.J. & M.H.A. Keenleyside. 1966. Responses to light of young Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis). J. Fish. Res. Board Can. 23: 1007–1024.

    Google Scholar 

  • Harosi, F.I. & Y. Hashimoto. 1983. Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace. Science 222: 1021–1023.

    PubMed  Google Scholar 

  • Harosi, F.I. & E.F. MacNichol. 1974. Visual pigments of goldfish cones. J. Gen. Physiol. 63: 279–304.

    Article  PubMed  Google Scholar 

  • Hawryshyn, C.W. & R. Beauchamp. 1985. Ultraviolet photosensitivity in goldfish: an independent U.V. retinal mechanism. Vision Res. 25: 11–20.

    Article  PubMed  Google Scholar 

  • Hawryshyn, C.W. & W.N. McFarland. 1987. Cone photoreceptor mechanisms and the detection of polarized light in fish. J. Comp. Physiol. A 160: 459–465.

    Article  Google Scholar 

  • Hesthagen, I.H. 1980. Locomotor activity in the painted goby,Pomatoschistus pictus (Malm, Pisces), in relation to light intensity. Sarsia 65: 13–18.

    Google Scholar 

  • Hoar, W.S. 1942. Diurnal variations in feeding activity of young salmon and trout. J. Fish. Res. Board Can. 6: 90–101.

    Google Scholar 

  • Katz, H.M. 1978. Circadian rhythms in juvenile American shad,Alosa sapidissima. J. Fish Biol. 12: 609–614.

    Google Scholar 

  • Kleerekoper, H., J.H. Matis, A.M. Timms & P. Gensler. 1973. Locomotor response of the goldfish to polarized light and its e-vector. J. Comp. Physiol. 86: 27–36.

    Article  Google Scholar 

  • Kramer, D.Z. & M. McClure. 1982. Aquatic surface respiration, a undespread adaptation to hypoxia in tropical freshwater fishes. Env. Biol. Fish. 7: 47–55.

    Article  Google Scholar 

  • Landless, P.J. 1976. Demand-feeding behaviour of rainbow trout. Aquaculture 7: 11–25.

    Article  Google Scholar 

  • Loew, E.R. & J.N. Lythgoe. 1978. The ecology of cone pigments in teleost fishes. Vision Res. 18: 715–722.

    Article  PubMed  Google Scholar 

  • Manteifel, B.P., I.I. Girsa & D.S. Pavlov. 1978. On rhythms of fish behavior. pp. 215–224. In: J.E. Thorpe (ed.) Rhythmic Activity of Fishes, Academic Press, London.

    Google Scholar 

  • Marks, W.G. 1965. Visual pigments of single goldfish cones. J. Physiol. 178: 14–32.

    PubMed  Google Scholar 

  • Molina Borja, M., E. Perez, R. Pupier & B. Buisson. 1990. Entrainment of the circadian activity rhythm in the juvenile trout,Salmo trutta L., by red light. J. interdiscipl. Cycle Res. 21: 81–89.

    Google Scholar 

  • Müller, K. 1978. Locomotor activity of fish and environmental oscillations. pp. 1–20. In: J.E. Thorpe (ed.) Rhythmic Activity of Fishes, Academic Press, London.

    Google Scholar 

  • Muntz, W.R.A. & D.P.M. Northmore. 1970. Vision and visual pigments in a fish,Scardinius erythrophthalmus (the rudd). Vision Res. 10: 281–298.

    Article  PubMed  Google Scholar 

  • Richardson, N.E. & J.D. McLeave. 1974. Locomotor activity rhythms of juvenile atlantic salmon (Salmo salar) in various light conditions. Biol. Bull. 147: 422–432.

    PubMed  Google Scholar 

  • Steele, C.W. 1984. Diel activity rhythms and orientation of sea catfish (Arius felis) under constant conditions of light and darkness. Mar. Behav. Physiol. 10: 183–198.

    Google Scholar 

  • Steele, C.W. 1985. Absence of a tidal component in the diel pattern of locomotory activity of sea catfish,Arius fells. Env. Biol. Fish. 12: 69–73.

    Article  Google Scholar 

  • Stickney, A.P. 1972. The locomotor activity of the juvenile herring (Clupea harengus harengus L.) in response to changes in illumination. Ecology 53: 438–445.

    Google Scholar 

  • Varanelli, C.C. & J.D. McCleave. 1974. Locomotor activity of Atlantic salmon parr (Salmo salar L.) in various light conditions and in weak magnetic fields. Anim. Behav. 22: 178–186.

    Google Scholar 

  • Waterman, T.H. & R.B. Forward. 1972. Field demonstration of polarotaxis in the fishZenarchopterus. J. Exp. Biol. 180: 33–54.

    Google Scholar 

  • Wehner, R. 1976. Polarized-light navigation by insects. Sci. Amer. 235: 106–115.

    PubMed  Google Scholar 

  • Winemiller, K.O. 1987. Feeding and reproductive biology of the currito,Hoplosternum littorale, in the Venezuelan Ilanos with comments on the possible function of the enlarged male pectoral spines. Env. Biol. Fish. 20: 219–227.

    Article  Google Scholar 

  • Yager, D. 1967. Behavioural measures and theoretical analysis of spectral sensitivity and spectral saturation in the goldfish,Carassius auratus. Vision Res. 7: 707–727.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boujard, T., Moreau, Y. & Luquet, P. Diel cycles inHoplosternum littorale (Teleostei): entrainment of feeding activity by low intensity colored light. Environ Biol Fish 35, 301–309 (1992). https://doi.org/10.1007/BF00001897

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00001897

Key words

Navigation