Skip to main content
Log in

Circadian rhythms and feeding time in fishes

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Although several studies have described effects of meal frequency and timing of meals on growth performance and body composition of different species of fishes, the mechanisms by which such variables influence the energy partitioning processes is not known. They may interact with the natural feeding rhythm of the fish, or with various behavioural and physiological parameters that exhibit ‘circadian-like’ patterns; however, in most cases, the endogenous character of such rhythms is not clear. The time of feeding, perse, can act as a Zeitgeber and override the effect of the light/dark alternation. Fish that are fed always at the same time of day show typical pre-feeding activity. Blood levels of some nutrients and hormones also show peaks or troughs at the time of feeding, but whether these are pre-feeding or post-prandial events is not clear. These results from fish are compared with similar studies with mammals. The existence and location of an endogenous multi-oscillator system is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Abe, H. & S. Sugimoto. 1987. Food-anticipatory response to restricted food access based on the pigeon's biological clock. Animal Learn. Behav. 15: 353–359.

    Google Scholar 

  • Abe, H., M. Kida, K. Tsuji & T. Mano. 1989. Feeding cycles entrain circadian rhythms of locomotor activity in CS mice but not in C57BL/6J mice. Physiol. Behav. 45: 397–401.

    Google Scholar 

  • Adron, J.W., P.T. Grant & C.B. Cowey. 1973. A system for the quantitative study of the learning capacity of rainbow trout and its application to the study of food preferences and behaviour. J. Fish Biol. 5: 625–636.

    Google Scholar 

  • Ali, M.A. 1964. Diurnal rhythm in the rates of oxygen consumption, locomotor and feeding activity of yearling Atlantic salmon (Salmo salar) under various light conditions. Proc. Ind. Acad. Sci. B. 60: 249–263.

    Google Scholar 

  • Andreasson, S. 1969. Locomotor activity pattern of Cottus poecilopus Heckel and C. gobio L. (Pisces). Oikos 20: 78–94.

    Google Scholar 

  • Andreasson, S. 1973. Seasonal changes in diel activity of Cottus poecilopus and C. gobio (Pisces) at the arctic circle. Oikos 24: 16–23.

    Google Scholar 

  • Andrews, J.W. & J.W. Page. 1975. The effects of frequency of feeding on culture of catfish. Trans. Amer. Fish. Soc. 2: 317–321.

    Google Scholar 

  • Armstrong, S. 1980. A chronometric approach to the study of feeding behavior. Neurosci. Biobehav. Rev. 4: 27–53.

    Google Scholar 

  • Aschoff, J. 1960. Exogenous and endogenous components in circadian rhythm. Cold Spring Harbor Symp. Quant. Biol. 25: 11–28.

    Google Scholar 

  • Aschoff, J. 1979. Circadian rhythms: general feature and endocrinological aspects. pp. 1–61. In: D.T. Krieger (ed.) Endocrine Rhythms, Raven Press, New York.

    Google Scholar 

  • Aschoff, J.1981. Free-running and entrained circadian rhythms. pp. 81–93. In: J. Aschoff (ed.) Handbook of Behavioral Neurobiology, Vol. 4: Biological Rhythms, Plenum Press, New York.

  • Aschoff, J. 1986. Anticipation of a daily meal: a process of ‘learning’ due to entrainment. Monitore Zool. Ital. 20: 195–219.

    Google Scholar 

  • Aschoff, J. 1989. Temporal orientation: circadian clocks in animals and humans. 1989. Anim. Behav. 37: 881–896.

    Google Scholar 

  • Audet, C., G.J. Fitzgerald & H. Guderley. 1986. Photoperiod effects on plasma cortisol levels in Gasterosteus aculeatus. Gen. Comp. Endocrinol. 61: 76–81.

    Google Scholar 

  • Axelrod, J. 1974. The pineal gland: A neurochemical transducer. Science 28: 1341–1348.

    Google Scholar 

  • Bachman, R.A., W.W. Reynolds & M.E. Casterlin. 1979. Diel locomotor activity patterns of wild brown trout (Salmo trutta L.) in an electronic shuttlebox. Hydrobiologia 66: 45–47.

    Google Scholar 

  • Balon, E.K. 1961. Zisťovanie dennej aktivity rýb pomocou lovu čereňom (Determination of the diel activity in fishes by means of a liftnet). Biológia (Bratislava) 16: 532–537.

    Google Scholar 

  • Bassi, C.J. & M.K. Powers. 1987. Circadian rhythm in goldfish visual sensitivity. Invest. Ophtalmol. Vis. Sci. 28: 1811–1815.

    Google Scholar 

  • Bieniarz, K., M. Sokolowska, A. Fostier & P. Epler. 1986. Daily changes in blood serum levels of 17β-estradiol, and 11-ketotestosterone in the mature carp Cyprinus carpio L. Chronobiologia 13: 23–27.

    Google Scholar 

  • Birks, E.K. & R.D. Ewing. 1981. Photoperiod effects on hydroxyindole-O-methyltransferase activity in the pineal gland of chinook salmon (Oncorhynchus tshawytscha). Gen. Comp. Endocrinol. 43: 277–283.

    Google Scholar 

  • Boehlke, K.W., R.L. Church, O.W. Tiemeier & B.E. Eleftheriou. 1966. Diurnal rhythm in plasma glucocorticoid levels in channel catfish (Ictalurus punctatus). Gen. Comp. Endocrinol. 7: 18–21.

    Google Scholar 

  • Bolles, R.C. & J. De Lorge. 1962. The rat's adjustment to adiurnal feeding cycles. J. Comp. Physiol. Psychol. 55: 760–762.

    Google Scholar 

  • Bolles, R.C. & L.W. Stokes. 1965. Rat's anticipation of diurnal and a-diurnal feeding. J. Comp. Physiol. Psychol. 60: 290–294.

    Google Scholar 

  • Boujard, T., P. Keith & P. Luquet. 1990. Diel cycle in Hoplosternum littorale (Teleostei): evidence for synchronization of locomotor, air breathing and feeding activity by circadian alternation of light and dark. J. Fish Biol. 36: 133–140.

    Google Scholar 

  • Boujard, T. & J.F. Leatherland. 1992. Demand-feeding behaviour and diel patterns of feeding activity in Oncorhynchus mykiss held under different photoperiod regimes. J. Fish Biol. (in press).

  • Boujard, T., Y. Moreau & P. Luquet. 1991. Entrainment of the circadian rhythm of food demand by infradian cycles of light/dark alternation in Hoplosternum littorale (Teleostei). Aquat. Living Resour. (in press).

  • Boulos, Z., A.M. Rosenwasser & M. Terman. 1980. Feeding schedules and the circadian organization of behavior in the rat. Behav. Brain. Res. 1: 39–65.

    Google Scholar 

  • Boulos, Z. & M. Terman. 1980. Food availability and daily biological rhythms. Neurosci. Biobehav. Rev. 4: 119–131.

    Google Scholar 

  • Brady, J. 1987. Circadian rhythms—endogenous or exogenous? J. Comp. Physiol. A. 161: 711–714.

    Google Scholar 

  • Brett, J.R. 1971. Satiation time, and maximum food intake of sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Board Can. 28: 409–415.

    Google Scholar 

  • Bry, C. 1982. Daily variations in plasma cortisol levels of individual female of rainbow trout Salmo gairdneri: evidence for a post-feeding peak in well-adapted fish. Gen. Comp. Endocrinol. 48: 462–468.

    Google Scholar 

  • Burdeyron, H. & B. Buisson. 1982a. Etude du rythme alimentaire circadien d'un poisson benthique dulçaquicole carnivore, la loche (Noemacheilus barbatulus), dans son milieu naturel. An. de la Station Biologique de Besse en Chandesse 16: 171–181.

    Google Scholar 

  • Burdeyron, H. & B. Buisson. 1982b. On a circadian endogenous locomotor rhythm of loaches (Noemachedus barbatulus L., Pisces, Cobitidae). Zool. Jb. Physiol. 86: 82–89.

    Google Scholar 

  • Campana, S.E. 1983. Feeding periodicity and the production of daily growth increments in otoliths of steelbead trout (Salmo gairdneri) and starry flounder (Platichthys stellatus). Can. J. Zool. 61: 1591–1597.

    Google Scholar 

  • Carrillo, M.A., J. Perez & S. Zanuy. 1986. Efecto de la hora de injesta y de la naturaleza de la dieta sobre el crecimiento de la lubina (Dicentrarchus labrax L.). Inv. Pesq. 50: 83–95.

    Google Scholar 

  • Chaston, I. 1968. Influence of light on activity of brown trout (Salmo trutta). J. Fish. Res. Board Can. 25: 1285–1289.

    Google Scholar 

  • Coleman, G.J., S. Harper, J.D. Clarke & S. Armstrong. 1982. Evidence for a separate meal-associated oscillator in the rat. Physiol. Behav. 29: 107–115.

    Google Scholar 

  • Cook, R.F. & J.G. Eales. 1987. Effects of feeding and photocycle on diel changes in plasma thyroid hormone levels in rainbow trout, Salmo gairdneri. J. Exp. Zool. 242: 161–169.

    Google Scholar 

  • Davis, R.E. 1962. Daily rhythm in the reaction of fish to light. Science 137: 430–432.

    Google Scholar 

  • Davis, R.E. & E. Bardach. 1965. Time co-ordinated prefeeding activity in fish. Anim. Behav. 13: 154–162.

    Google Scholar 

  • Dearry, A. & R.B. Barlow. 1987. Circadian rhythms in the green sunfish retina. J. Gen. Physiol. 89: 745–770.

    Google Scholar 

  • Delahunty, G., G. Bauer, M. Prack & V. de Vlaming. 1978a. Effects of pinealectomy and melatonin treatment on liver and metabolites in the goldfish, Carassius auratus. Gen. Comp. Endocrinol. 35: 99–109.

    Google Scholar 

  • Delahunty, G., J. Olcese, M. Prack, M.J. Vodicnik, C.B. Schreck & V. de Vlaming. 1978b. Diurnal variations in the physiology of the goldfish Carassius auratus. J. Interdisc. Cycle Res. 9: 73–88.

    Google Scholar 

  • Delahunty, G., C.B. Schreck & V.L. de Vlaming. 1980. Effects of photoperiod on plasma corticoid levels in the goldfish, Carassius auratus — role of the pineal. Comp. Biochem. Physiol. 65A: 355–358.

    Google Scholar 

  • DeSilva, C.D., S. Premawansa & C.N. Keembiyahetty. 1986. Oxygen consumption in Oreochromis niloticus (L.) in relation to development, salinity, temperature and time of day. J. Fish Biol. 29: 267–277.

    Google Scholar 

  • de Vlaming, V.L., M. Sage & R. Thiegs. 1975. A diurnal rhythm of pituitary prolactin activity with diurnal effects of mammalian and teleostean prolactin on total body lipid deposition and liver lipid metabolism in teleost fishes. J. Fish Biol. 7: 717–726.

    Google Scholar 

  • Deyoe, C.W., O.W. Tiemeier & C. Suppes. 1968. Effects of protein, amino acid levels, and feeding methods on growth of fingerling channel catfish. Prog. Fish-Cult. 30: 187–195.

    Google Scholar 

  • Douglas, R.H. 1982. An endogenous crepuscular rhythm of rainbow trout (Salmo gairdneri) photomechanical movements. J. Exp. Biol. 96: 377–388.

    Google Scholar 

  • Dudek, J. 1957. Príspevok na určenie vplyvu svetla na intensity prijímania potravyu piesta zelenkavého (Blicca bjoerkna) (Determination of the effect of light on the intensity of feeding in white bream). Biológia (Bratislava) 12: 374–376.

    Google Scholar 

  • Eales, J.G., M. Hughes & L. Uin. 1981. Effect of food intake on diel variation in plasma thyroid hormone levels in rainbow trout, Salmo gairdneri. Gen. Comp. Endocrinol. 45: 167–174.

    Google Scholar 

  • Edmonds, S.C. & N.T. Adler. 1977a. Food and light as entrainers of circadian running activity in the rat. Physiol. Behav. 18: 915–919.

    Google Scholar 

  • Edmonds, S.C. & N.T. Adler. 1977b. The multiplicity of biological oscillators in the control of circadian running activity in the rat. Physiol. Behav. 18: 921–930.

    Google Scholar 

  • Elliott, J.M. 1973. The food of brown and rainbow trout (Salmo trutta and S. gairdneri) in relation to the abundance of drifting invertebrates in a mountain stream. Oecologia 12: 329–347.

    Google Scholar 

  • Elliott, J.M. 1975. Number of meals in a day, maximum weight of food consumed in a day and maximum rate of feeding for brown trout, Salmo trutta L. Freshwat. Biol. 5: 287–303.

    Google Scholar 

  • Erckens, W. & W. Martin. 1982a. Exogenous and endogenous control of swimming activity in Astyanax mexicanus (Characidae, Pisces) by direct light response and by a circadian oscillator I. Analyses of the time-control systems of an epigean river population. Z. Naturforsch. 37c: 1253–1265.

    Google Scholar 

  • Erckens, W. & W. Martin. 1982b. Exogenous and endogenous control of swimming activity in Astyanax mexicanus (Characidae, Pisces) by direct light response and by a circadian oscillator II. Features of time-controlled behaviour of a cave population and their comparison to a epigean ancestral form. Z. Naturforsch. 37c: 1266–1273.

    Google Scholar 

  • Eriksson, L.-O. 1973. Spring inversion of the diel rhythm of locomotor activity in young sea going brown trout, Salmo trutta trutta L., and Atantic salmon, Salmo salar L. Aquilo Ser. Zool. 14: 68–79.

    Google Scholar 

  • Eriksson, L.-O. 1978. Nocturnalism versus diurnalism; dualism within fish individuals. pp. 69–90. In: J.E. Thorpe (ed.) Rhythmic Activity of Fishes, Academic Press, London.

    Google Scholar 

  • Eriksson, L.-O. & T. Van Veen. 1980. Circadian rhythms in the brown bulhead, Ictalurus nebulosus (Teleostei). Evidence for an endogenous rhythm in feeding, locomotor, and reaction time behaviour. Can. J. Zool. 58: 1899–1907.

    Google Scholar 

  • Falcn, J., J. Brun-Marmillon, B. Claustrat & J.P. Collin. 1989. Regulation of melatonin secretion in a photoreceptive pineal organ: an in vitro study in the pike. J. Neurosci. 9: 1943–1950.

    Google Scholar 

  • Falcn, J., J.F. Guerlotté, P. Voisin & J.-P.H. Collin. 1987. Rhythmic melatonin biosynthesis in a photoreceptive pineal organ: a study in the pike. Neuroendocrinology 45: 479–486.

    Google Scholar 

  • Fingerman, S.W. 1976. Circadian rhythms of brain 5-hydroxytryptamine and swimming activity in the teleost, Fundulus grandis. Comp. Biochem. Physiol. 54C: 49–53.

    Google Scholar 

  • Fivizzani, A.J., R.E. Spieler & T.A. Noeske. 1984. The influence of ambient temperature on the daily variation of serum cortisol in the banded killifish, Fundulus diaphanus. J. Interdisc. Cycle. Res. 15: 3–8.

    Google Scholar 

  • Fletcher, D.J. 1984. The physiological control of appetite in fish. Comp. Biochem. Physiol. 78A: 617–638.

    Google Scholar 

  • Forbes, J.M. 1988. Metabolic aspects of the regulation of voluntary food intake and appetite. Nutr. Res. Rev. 1: 145–168.

    Google Scholar 

  • Frisch, B. & J. Aschoff. 1987. Circadian rhythms in honeybees: entrainment by feeding cycles. Physiol. Entomol. 12: 41–49.

    Google Scholar 

  • Garcia, L.E. & A.H. Meier. 1973. Daily rhythms in concentrations of plasma cortisol in male and female gulf killifish, Fundulus grandis. Biol. Bull. 144: 471–479.

    Google Scholar 

  • Garg, S.K. & B.I. Sundararaj. 1986. Role of pineal in the regulation of some aspects of circadian rhythmicity in the catfish, Heteropneustes fossilis (Bloch). Chronobiologia 13: 1–11.

    Google Scholar 

  • Gauldie, R.W. & D.G.A. Nelson. 1988. Aragonite twinning and neuroprotein secretion are the cause of daily growth rings in fish otoliths. Comp. Biochem. Physiol. 90A: 501–509.

    Google Scholar 

  • Gern, W.A. & S.S. Greenhouse. 1988. Examination of in vitro melatonin secretion from superfused trout (Salmo gairdneri) pineal organs maintained under diel illumination or continuous darkness. Gen. Comp. Endocrinol. 71: 163–174.

    Google Scholar 

  • Gern, W.A., D.W. Owens & C.L. Ralph. 1978. Persistence of the nicthemeral rhythm of melatonin secretion in pinealectomized or optic tract-sectioned trout (Salmo gairdneri). J. Exp. Zool. 205: 371–376.

    Google Scholar 

  • Gibbs F.P. 1979. Fixed interval feeding does not entrain the circadian pacemaker in blind rats. Amer. J. Physiol. 236: R249–R253.

    Google Scholar 

  • Gibson, R.J. & M.H.A. Keenleyside. 1966. Responses to light of young Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis). J. Fish. Res. Board Can. 23: 1007–1024.

    Google Scholar 

  • Godin, J.-G.J. 1981. Circadian rhythm of swimming activity in the juvenile pink salmon (Oncorhynchus gorbuscha). Marine Biol. 64: 341–349.

    Google Scholar 

  • Goetz, F., J. Bishop, F. Halberg, R.B. Sothern, R. Brunning, B. Senske, B. Greenberg, D. Minors, P. Stoney, I.D. Smith, G.D. Rosen, D. Cressey, E. Haus & M. Apfelbaum. 1976. Timing of single daily meal influences relations among human circadian rhythms in urinary cyclid AMP and hemic glucagon, insulin and iron. Experientia 32: 1081–1084.

    Google Scholar 

  • Goudie, C.A., K.B. Davis & B.A. Simco. 1983. Influence of the eyes and pineal gland on locomotor activity patterns of channel catfish Ictalurus punctatus. Physiol. Zool. 56: 10–17.

    Google Scholar 

  • Grayton, B.D. & F.W.H. Beamish. 1977. Effects of feeding frequency on food intake, growth and body composition of rainbow trout (Salmo gairdneri). Aquaculture 11: 159–172.

    Google Scholar 

  • Greenland, D.C. & R.L. Gill. 1979. Multiple daily feedings with automatic feeders improve growth and feed conversion rates of channel catfish. Prog. Fish-Cult. 41: 151–153.

    Google Scholar 

  • Grove, D.J., L.G. Loizides & J. Nott. 1978. Satiation amount, frequency of feeding and gastric emptying rate in Salmo gairdneri. J. Fish Biol. 12: 507–516.

    Google Scholar 

  • Gutierrez, J., M. Carrillo, S. Zanuy & J. Planas. 1984. Daily rhythms of insulin and glucose levels in the plasma of sea bass Dicentrarchus labrax after experimental feeding. Gen. Comp. Endocrinol. 55: 393–397.

    Google Scholar 

  • Gwinner, E. 1978. Effects of pinealectomy on circadian locomotor activity rhythms in european starlings, Sturnus vulgaris. J. Comp. Physiol. 126: 123–129.

    Google Scholar 

  • Gwinner, E. 1986. Circannual rhythms. Springer-Verlag, Berlin. 154 pp.

    Google Scholar 

  • Gwyther, D. & D.J. Grove. 1981. Gastric emptying in Limanda limanda (L.) and the return of appetite. J. Fish Biol. 18: 245–259.

    Google Scholar 

  • Hafeez, M.A. 1971. Light microscopic studies on the pineal organ in teleost fishes with special regard to its function. J. Morphol. 134: 282–314.

    Google Scholar 

  • Hafeez, M.A. & M.E. Merhige. 1977. Light and electron microscopic study of the pineal complex of the coelacanth, Latimeria chalumnae Smith. Cell Tiss. Res. 178: 249–265.

    Google Scholar 

  • Halberg, F. 1989. Some aspects of the chronobiology of nutrition: more work is needed on ‘When to eat’. J. Nutr. 119: 333–343.

    Google Scholar 

  • Helfman, G.S. 1981. Twilight activities and temporal structure in a freshwater fish community. Can. J. Fish. Aquat. Sci. 38: 1405–1420.

    Google Scholar 

  • Helfman, G.S. 1986a. Diel distribution and activity of American eels (Anguilla rostrata) in a cave-spring. Can. J. Fish. Aquat. Sci. 43: 1595–1605.

    Google Scholar 

  • Helfman, G.S. 1986b. Fish behaviour by day, night and twilight. pp. 366–387. In: T.J. Pitcher (ed.) The Behaviour of Teleost Fishes, Cromm Helm, London.

    Google Scholar 

  • Higgs, D.A. & J.G. Eales. 1977. Influence of food deprivation on radioiodothyronine and radioiodide kinetics in yearling brook trout, Salvenilus fontinalis (Mitchill), with a consideration of the extent of L-thyroxine conversion to 3,5,3′-triiodo-L-thyronine. Gen. Comp. Endocrinol. 32: 29–40.

    Google Scholar 

  • Hoar, W.S. 1942. Diurnal variations in feeding activity of young salmon and trout. J. Fish. Res. Board Can. 6: 90–101.

    Google Scholar 

  • Hobson, E.S., J.R. Chess & W.N. McFarland. 1981. Ontogeny of twilight migration patterns in grunts (Pisces: Haemulidae). Anim. Behav. 30: 317–326.

    Google Scholar 

  • Honma, K.-I., S. Honma & T. Hiroshige. 1983a. Critical role of food amount for prefeeding corticosterone peak in rats. Amer. J. Physiol. 245: R339–R344.

    Google Scholar 

  • Honma, K.-I., C. von Goetz & J. Aschoff. 1983b. Effects of restricted daily feeding on free-running circadian rhythms in rats. Physiol. Behav. 30: 905–913.

    Google Scholar 

  • Hontella, A. 1984. Daily cycles of serum gonadotropin hormone in fish. Trans. Amer. Fish. Soc. 113: 458–466.

    Google Scholar 

  • Hontella, A. & K. Lederis. 1985. Diel variations in arginine vasotocin content of goldfish brain and pituitary: effects of photoperiod and pinealectomy. Gen. Comp. Endocrinol. 57: 397–404.

    Google Scholar 

  • Hontella, A. & R.E. Peter. 1978. Daily cycles in serum gonadotropin levels in the goldfish: effects of photoperiod, temperature, and sexual condition. Can. J. Zool. 56: 2430–2442.

    Google Scholar 

  • Hontella, A. & R.E. Peter. 1980. Effects of pinealectomy, blinding, and sexual condition on serum gonadotropin levels in the goldfish. Gen. Comp. Endocrinol. 40: 168–179.

    Google Scholar 

  • Jacob, S.S. & N.B. Nair. 1983. Periodicity in feeding activity in the larvivorous fish Aplocheilus lineatus (Cuv. & Val.) and Macropodus cupanus (Cuv. & Val.). Proc. Ind. nat. Sci. Acad. 49b: 1–8.

    Google Scholar 

  • Jilge, B., H. Hörnicke & H. Stähle. 1987. Circadian rhythms of rabbits during restrictive feeding. Amer. J. Physiol. 253: R46–R54.

    Google Scholar 

  • Jobling, M. 1982. Some observations on the effects of feeding frequency on the food intake and growth of plaice. Pleuronectes platessa L. J. Fish Biol. 20: 431–444.

    Google Scholar 

  • Jobling, M. 1986. Mythical models of gastric emptying and implications for food consumption studies. Env. Biol. Fish. 16: 35–50.

    Google Scholar 

  • Johnston, W.L., E. MacDonald & J.W. Hilton. 1989. Relationships between dietary ascorbic acid status and deficiency, weight gain and brain neurotransmitter levels in juvenile rainbow trout, Salmo gairdneri. Fish Physiol. Biochem. 6: 353–365.

    Google Scholar 

  • Johnston, W.L., J.L. Atkinson, J.W. Hilton & K.E. Were. 1990. Effect of dietary tryptophan on plasma and brain tryptophan, brain serotonin, and brain 5-hydroxyindoleacetic acid in rainbow trout. J. Nutr. Biochem. 1: 49–54.

    Google Scholar 

  • Kadowaki, S., T. Nakazono & T. Kasedo. 1981. Apparent oxygen consumption of yellowtails Seriora quinqueradiata on feeding and non-feeding days. Mem. Fac. Fish., Kagoshima Univ. 30: 173–178.

    Google Scholar 

  • Katz, H.M. 1978. Circadian rhythms in juvenile American shad, Alosa sapidissima. J. Fish Biol. 12: 609–614.

    Google Scholar 

  • Kaushik, S.J., K. Dabrowski & P. Luquet. 1982. Patterns of nitrogen excretion and oxygen consumption during ontogenesis of common carp (Cyprinus carpio). Can. J. Fish. Aquat. Sci. 39: 1095–1105.

    Google Scholar 

  • Kavaliers, M. 1978. Seasonal changes in the circadian period of the lake chub, Couesius plumbeus. Can. J. Zool. 56: 2591–2596.

    Google Scholar 

  • Kavaliers, M. 1979a. Pineal involvement in the control of circadian rhythmicity in the lake chub, Couesius plumbeus. J. Exp. Zool. 209: 33–40.

    Google Scholar 

  • Kavaliers, M. 1979b. The pineal organ and circadian organization of teleost fish. Rev. Can. Biol. 38: 281–292.

    Google Scholar 

  • Kavaliers, M. 1980a. Circadian locomotor activity rhythms of the burbot, Lota Iota: seasonal differences in period length hand the effect of pinealectomy. J. Comp. Physiol. 136: 212–218.

    Google Scholar 

  • Kavaliers, M. 1980b. Circadian activity of the white sucker, Catostomus commersoni: comparison of individual and shoaling fish. Can. J. Zool. 58: 1399–1403.

    Google Scholar 

  • Kavaliers, M. 1980c. Social groupings and circadian activity of the killifish, Fundulus heteroclitus. Biol. Bull. 158: 69–76.

    Google Scholar 

  • Kavaliers, M. 1981a. Circadian rhythm of nonpineal extraretinal photosensitivity in a teleost fish, the lake chub. Couesius plumbeus. J. Exp. Zool. 216: 7–11.

    Google Scholar 

  • Kavaliers, M. 1981b. Circadian organization in white suckers Catostomus commersoni: the role of the pineal organ. Comp. biochem. Physiol. 68A: 127–129.

    Google Scholar 

  • Kavaliers, M. 1984. Opioid peptides, the pineal gland, and rhythmic behavior in fish. Trans. Amer. Fish. Soc. 113: 432–438.

    Google Scholar 

  • Kezuka, H., K. Furukawa, K. Aida & I. Hanyu. 1988. Daily cycles in plasma melatonin levels under long or short photoperiod in the common carp, Cyprinus carpio. Gen. Comp. Endocrinol. 72: 296–302.

    Google Scholar 

  • Knight, G.C. & M. Sage. 1987. The effect of time of day and photoperiod on prolactin content and clectrophoretic mobility in the pituitary of the goldfish, Carassius auratus L. Can. J. Zool. 65: 199–203.

    Google Scholar 

  • Kohler, C.C. & J.J. Ney. 1980. Piscivory in a land-locked alewife (Alosa pseudoharengus) population. Can. J. Fish. Aquat. Sci. 37: 1314–1317.

    Google Scholar 

  • Krieger, D.T. 1974. Food and water restriction shifts corticosterone, temperature, activity and brain amine periodicity. Endocrinology 95: 1195–1201.

    Google Scholar 

  • Krieger, D.T. & H. Hauser. 1978. Comparison of synchronization of circadian corticosteroid rhythms of photoperiod and food. Proc. Nat. Acad. Sci. U.S.A. 75: 1577–1581.

    Google Scholar 

  • Kruuk, H. 1963. Diurnal periodicity in the activity of the common sole, Solea vulgaris Quensel. Neth. J. Sea Res. 2: 1–28.

    Google Scholar 

  • Kryuchkov, V.I., R.Y. Kasimov, B.F. Tsonif & T.A. Mamedova. 1989. Daily rhythm of locomotor activity of young of the mirror carp, Cyprinus carpio, under various regimes of illumination and temperature. J. Ichthyol. 29: 150–155.

    Google Scholar 

  • Kunz, Y.W., C. McCormack & T. Hayden. 1986. Diurnal rhythm of cAMP in the eye of the trout, Salmo trutta. Cell Biol. Internat. Rep. 10: 763.

    Google Scholar 

  • Laidley, C.W. & J.F. Leatherland. 1988. Circadian studies of plasma cortisol, thyroid hormone, protein, glucose and ion concentration, liver glycogen concentration and liver and spleen weight in rainbow trout, Salmo gairdneri Richardson. Comp. Biochem. Physiol. 89A: 495–503.

    Google Scholar 

  • Lamba, V.J., S.V. Goswami & B.I. Sundararaj. 1983. Circannual and circadian variations in plasma levels of steroids (cortisol, estradiol-17β,, estrone, and testosterone) correlated with the annual gonadal cycle in the catfish, Heteropneustes fossilis (Bloch). Gen. Comp. Endocrinol. 50: 205–225.

    Google Scholar 

  • Landless, P.J. 1976. Demand-feeding behaviour of rainbow trout. Aquaculture 7: 11–25.

    Google Scholar 

  • Leatherland, J.F., C.Y. Cho & S.J. Slinger. 1977. Effects of diet, ambient temperature, and holding conditions on plasma thyroxine levels in rainbow trout (Salmo gairdneri). J. Fish. Res. Board Can. 34: 677–682.

    Google Scholar 

  • Leatherland, J.F. & B.J. Holub. 1978. Circadian effects of prolactin on lipid metabolism and hydromineral regulation in intact and hypophysectomized goldfish, Carassius auratus L. J. Interdisc. Cycle Res. 9: 125–136.

    Google Scholar 

  • Leatherland, J.F., B.J. Holub, J. Pietrarski & V. De Vlaming. 1976. Diurnal variation in the activity of hepatic glycerol-3-phosphate acyltransferase in response to ovine prolactin in goldfish, Carassius auratus L. J. Endocrinol. 71: 275–276.

    Google Scholar 

  • Leatherland, J.F. & B.A. McKeown. 1973. Circadian rhythm in the plasma levels of prolactin in goldfish, Carassius auratus L. J. interdiscipl. Cycle Res. 4: 137–143.

    Google Scholar 

  • Leatherland, J.F., B.A. McKeown & T.M. John. 1974. Circadian rhythm of plasma prolactin, growth hormone, glucose and free fatty acid in juvenile kokanee salmon, Oncorhynchus nerka. Comp. Biochem. Physiol. 47a: 821–828.

    Google Scholar 

  • Leatherland, J.F. & R.A. Nuti. 1982. Diurnal variation in somatotrop activity and correlated changes in plasma free fatty acids and tissue lipid levels in rainbow trout Salmo gairdneri. J. Interdisc. Cycle Res. 13: 219–228.

    Google Scholar 

  • Lecomte, J. 1968. Les rhythmes d'activité chez les arthropodes. Ann. Epiphyties 19: 121–131.

    Google Scholar 

  • Leveille, G.A. & R.W. Hanson. 1965. Influence of periodicity of eating on adipose tissue metabolism in the rat. Can. J. Physiol. Pharm. 43: 857–868.

    Google Scholar 

  • Manteifel, B.P., I.I. Girsa & D.S. Pavlov. 1978. On rhythms of fish behaviour. pp. 215–224. In: J.E. Thorpe (ed.) Rhythmic Activity of Fishes, Academic Press London.

    Google Scholar 

  • Matsuyama, M., S. Adachi, Y. Nagahama, K. Maruyama & S. Matsura. 1990. Diurnal rhythm of serum steroid hormone levels in the japanese whiting, Sillago japonica, a daily-spawning teleost. Fish Physiol. Biochem. 8: 329–338.

    Google Scholar 

  • McCormack, C.A., T.J. Hayden & Y.W. Kunz. 1989. Ontogenesis of diurnal rhythms of cAMP concentration, outer segment disc shedding and retinomotor movements in the eye of the brown trout, Salmo trutta. Brain Behav. Evol. 34: 65–72.

    Google Scholar 

  • McFarland, W.N., J.C. Ogden & J.N. Lythgoe. 1979. The influence of light on the twilight migrations of grunts. Env. Biol. Fish. 4: 9–22.

    Google Scholar 

  • McKeown, B.A. & R.E. Peter. 1976. The effects of photoperiod and temperature on the release of prolactin from the pituitary gland of the goldfish, Carassius auratus L. Can. J. Zool. 54: 1960–1968.

    Google Scholar 

  • McNulty, J.A. 1978. The pineal of the troglophilic fish, Chologaster agassizi: an ultrastructural study. J. Neural Trans. 43: 47–71.

    Google Scholar 

  • McNulty, J.A. 1981. Synaptic ribbons in the pineal organ of the goldfish: circadian rhythmicity and the effects of constant light and constant darkness. Cell Tiss. Res. 215: 491–497.

    Google Scholar 

  • McNulty, J.A. & B.G. Nafpaktitis. 1977. Morphology of the pineal complex in seven species of lanternfishes (Pisces: Myctophidae). Amer. J. Anat. 150: 509–530.

    Google Scholar 

  • Mehrle, P.M. & W.R. Fleming. 1970. The effect of early and midday prolactin injection on the lipid content of Fundulus kansae held on a constant photoperiod. Comp. Biochem. Physiol. 36: 597–603.

    Google Scholar 

  • Meier, A.H. 1975. Chronophysiology of prolactin in the lower vertebrates. Amer. Zool. 15: 405–416.

    Google Scholar 

  • Meier, A.H. 1984. Temporal synergism of circadian neuroendocrine oscillations regulates seasonal conditions in the gulf killifish. Trans. Amer. Fish. Soc. 113: 422–431.

    Google Scholar 

  • Meier, A.H. & J.T. Burns. 1976. Circadian hormones rhythms in lipid regulation. Amer. Zool. 16: 649–659.

    Google Scholar 

  • Meijer, J.H., S. Daan, G.J.F. Overkamp & P.M. Hermann. 1990. The two-oscillator circadian system of tree shrews (Tupaia belangeri) and its response to light and dark pulses. J. Biol. Rhythms 5. 1–16.

    Google Scholar 

  • Menaker, M. & N. Zimmerman. 1976. Role of the pineal in the circadian system of birds. Amer. Zool. 16: 45–55.

    Google Scholar 

  • Mistlberger, R. 1990. Circadian pitfalls in experimental designs employing food restriction. Psychobiol. 18: 23–29.

    Google Scholar 

  • Mistlberger, R.E. & A. Rechtschaffen. 1984. Recovery of anticipatory activity to restricted feeding in rats with ventromedial hypothalamic lesions. Physiol. Behav. 33: 227–235.

    Google Scholar 

  • Molina Borja, M., E. Perez, R. Pupier & B. Buisson. 1990. Entrainment of the circadian activity rhythm in the juvenile trout, Salmo trutta L., by red light. J. Interdisc. Cycle Res. 21: 81–89.

    Google Scholar 

  • Moore, R.Y. 1980. Suprachiasmatic nucleus, secondary synchronizing stimuli and the central neural control of circadian rhythms. Brain Res. 183: 13–28.

    Google Scholar 

  • Moore, R.Y. & V.B. Eichler. 1972. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42: 201–206.

    Google Scholar 

  • Moore-Ede, M.C. & J.A. Herd. 1977. Renal electrolyte circadian rhythms: independence from feeding and activity patterns. Amer. J. Physiol. 232: F128–F135.

    Google Scholar 

  • Moore-Ede, M.C., W.S. Schmelzer, D.A. Kass & J.A. Herd. 1976. Internal organization of the circadian timing system in multicellular annimals. Fed. Proc. 35: 2333–2338.

    Google Scholar 

  • Morimoto, Y., K. Arisue & Y. Yamamura. 1977. Relationship between circadian rhythm of food intake and that of plasma corticosterone and effect of food restriction on circadian adrenocortical rhythm in the rat. Neuroendocrinology 23: 212–222.

    Google Scholar 

  • Morley, J.E. 1989. Appetite regulation: the role of peptides and hormones. J. Endocrinol. Invest. 12: 135–147.

    Google Scholar 

  • Mrosovsky, N., S.G. Reebs, G.I. Honrado & P.A. Salmon. 1989. Behavioural entrainment of circadian rhythms. Experientia 45: 696–702.

    Google Scholar 

  • Mugiya, Y. 1984. Diurnal rhythm in otolith formation in the rainbow trout, Salmo gairdneri: seasonal reversal of the rhythm in relation to plasma calcium concentrations. Comp. Biochem. Physiol. 78A: 289–293.

    Google Scholar 

  • Mugiya, Y., N. Watanabe, J. Yamada, J.M. Dean, D.G. Dunkelberger & M. Shimizu. 1981. Diurnal rhythm in otolith formation in the goldfish, Carassius auratus. Comp. Biochem. Physiol. 68A: 659–662.

    Google Scholar 

  • Müller, K. 1973. Seasonal phase shift and the duration of activity time in the burbot, Lota Iota (L.) (Pisces, Gadidae). J. Comp. Physiol. 84: 357–359.

    Google Scholar 

  • Müller, K. 1978a. Locomotor activity of fish and environmental oscillations. pp. 1–20. In: J.E. Thorpe (ed.) Rhythmic Activity of Fishes, Academic Press, London.

    Google Scholar 

  • Müller, K. 1978b. The flexibility of the circadian system of fish at different latitudes. pp. 91–104. In: J.E. Thorpe (ed.) Rhythmic Activity of Fishes, Academic Press, London.

    Google Scholar 

  • Murat, J.C., E.M. Plisetskaya & N.Y.S. Woo. 1981. Endocrine control of nutrition in cyclostomes and fish. Comp. Biochem. Physiol. 68A: 149–158.

    Google Scholar 

  • Narasimhan, P.V. & B.I. Sundararaj. 1971. Circadian variations in carbohydrate parameters in two teleosts, Notopterus notopterus (Pallas) and Colisa fasciata (Bloch and Schneider). Comp. Biochem. Physiol. 39B: 89–99.

    Google Scholar 

  • Natarajan, G.M. 1984. Diurnal rhythm of bimodal oxygen consumption in the gouramy, Osphromenus olfax (Day). Comp. Physiol. Ecol. 9: 38–40.

    Google Scholar 

  • Nelson, D.R. & R.H. Johnson. 1970. Diel activity rhythms in the nocturnal, bottom-dwelling sharks, Heterodontus francisci and Cephaloscyllium ventriosum. Copeia 1970: 732–739.

  • Nelson, W. & F. Halberg. 1986a. Meal-timing, circadian rhythms and life span of mice. J. Nutr. 116: 2244–2253.

    Google Scholar 

  • Nelson, W. & F. Halberg. 1986b. Schedule-shifts, circadian rhythms and lifespan of freely-feeding and meal-fed mice. Physiol. Behav. 38: 781–788.

    Google Scholar 

  • Nelson, W., L. Cadetto & F. Halberg. 1973. Circadian timing of a single daily ‘meal’ affects survival of mice. Proc. Soc. Exp. Biol. 144: 766–769.

    Google Scholar 

  • Noeske, T.A. & R.E. Spieler. 1983. Photoperiod and diel variations of serum cortisol, thyroxine and protein in goldfish, Carassius auratus L. J. Fish Biol. 23: 705–710.

    Google Scholar 

  • Noeske, T.A. & R.E. Spieler. 1984. Circadian feeding time affects growth of fish. Trans. Amer. Fish. Soc. 113: 540–544.

    Google Scholar 

  • Noeske, T.A., D. Erickson & R.E. Spieler. 1981. The time of day goldfish receive a single daily meal affects growth. J. World Maricult. Soc. 12: 73–77.

    Google Scholar 

  • Noeske-Hallin, T.A., R.E. Spieler, N.C. Parker & M.A. Suttle. 1985. Feeding time differentially affects fattening and growth of channel catfish. J. Nutr. 115: 1228–1232.

    Google Scholar 

  • Ooka-Souda, S. & H. Kabasawa. 1988. Circadian rhythms in locomotor activity of the hagfish, Eptatretus burgeri III. Hypothalamus: a locus of the circadian pacemaker? Zoolog. Sci. 5: 437–442.

    Google Scholar 

  • Ooka-Souda, S., H. Kabasawa & S. Kinoshita. 1988. Circadian rhythms in locomotor activity of the hagfish, Eptatretus burgeri II. The effect of brain ablation. Zoolog. Sci. 5: 431–435.

    Google Scholar 

  • O'Reilly, H., S.M. Armstrong & G.J. Coleman. 1986. Restricted feeding and circadian activity rhythms of a predatory marsupial, Dasyuroides bymei. Physiol. Behav. 38: 471–476.

    Google Scholar 

  • Osborn, R.H., T.H. Simpson & A.F. Youngson. 1978. Seasonal and diurnal rhythms of thyroidal status in the rainbow trout, Salmo gairdneri Richardson. J. Fish Biol. 12: 531–540.

    Google Scholar 

  • Ottaway, E.M. 1978. Rhythmic growth activity in fish scales. J. Fish Biol. 12: 615–623.

    Google Scholar 

  • Ottaway, E.M. & K. Simkiss. 1977. ‘instantaneous’ growth rates of fish scales and their use in studies of fish populations. J. Zool. Lond. 181: 407–419.

    Google Scholar 

  • Palmer, D.D., L.A. Robinson & R.E. Burrows. 1951. Feeding frequency: its role in the rearing of blueback salmon fingerlings in troughs. Prog. Fish-Cult. 13: 205–212.

    Google Scholar 

  • Parker, N.C. 1984. Chronobiologic approach to aquaculture. Trans. Amer. Fish. Soc. 113: 545–552.

    Google Scholar 

  • Perez, E. & B. Buisson. 1986. Research on the origin of the circadian activities in the course of the ontogenesis of the trout, Salmo trutta L. The activities of the eggs and the vesicled alevins in constant conditions. Biol. Zertralbl. 105: 609–613.

    Google Scholar 

  • Perez, J., S. Zanuy & M. Carrillo. 1988. Effects of diet and feeding time on daily variations in plasma insulin, hepatic c-AMP and other metabolites in a teleost fish, Dicentrarchus labrax L. Fish Physiol. Biochem. 5: 191–197.

    Google Scholar 

  • Persson, L. 1986. Patterns of food evacuation in fishes: a critical review. Env. Biol. Fish. 16: 51–58.

    Google Scholar 

  • Peter, R.E., A. Hontela, A.F. Cook & C.R. Paulencu. 1978. Daily cycles in serum cortisol levels in the goldfish: effects of photoperiod, temperature, and sexual condition. Can. J. Zool. 56: 2443–2448.

    Google Scholar 

  • Philippens, K.M.H., H. Von Mayersbach & L.E. Scheving. 1977. Effects of the scheduling of meal-feeding at different phases of the circadian system in rats. J. Nutr. 107: 176–193.

    Google Scholar 

  • Phillips, J.L.M. & P.J. Mikulka. 1979. The effects of restricted food access upon locomotor activity in rats with suprachiasmatic nucleus lesions. Physiol. Behav. 23: 257–262.

    Google Scholar 

  • Pickering, A.D. & T.G. Pottinger. 1983. Seasonal and diel changes in plasma cortisol levels of the brown trout, Salmo trutta L. Gen. Comp. Endocrinol. 49: 232–239.

    Google Scholar 

  • Pittendrigh, C.S. & S. Daan. 1976a. A functional analysis of circadian pacemakers in nocturnal rodents IV. Entrainment: pacemaker as clock. J. Comp. Physiol. 106: 291–331.

    Google Scholar 

  • Pittendrigh, C.S. & S. Daan. 1976b. A functional analysis of circadian pacemakers in nocturnal rodents V. Pacemaker structure: a clock for all seasons. J. Comp. Physiol. 106: 333–355.

    Google Scholar 

  • Pocknee, R.C. & F.W. Heaton. 1976. The effect of feeding frequency on the growth and composition of individual organs in the rat. Br. J. Nutr. 35: 97–104.

    Google Scholar 

  • Pocknee, R.C. & F.W. Heaton. 1978. Changes in organ growth with feeding pattern. The influence of feeding frequency on the circadian rhythm of protein synthesis in the rat. J. Nutr. 108: 1266–1273.

    Google Scholar 

  • Rance, T.A., B.I. Baker & G. Webley. 1982. Variations in plasma cortisol concentrations over a 24-hour period in the rainbow trout Salmo gairdneri. Gen. Comp. Endocrinol. 48: 269–274.

    Google Scholar 

  • Randolph, K.N. & H.P. Clemens. 1976. Some factors influencing the feeding behavior of channel catfish in culture ponds. Trans. Amer. Fish. Soc. 6: 718–724.

    Google Scholar 

  • Rapp, P.E. 1987. Why are so many biological systems periodic? Prog. Neurobiol. 29: 261–273.

    Google Scholar 

  • Reynolds, W.W. 1977. Circadian rhythms in the goldfish Carassius auratus L.: preliminary observations and possible implications. Rev. Can. Biol. 36: 355–356.

    Google Scholar 

  • Reynolds, W.W. & M.E. Casterlin. 1978. Circadian rhythm of preferred temperature in the bowfin Amia calva, a primitive holostean fish. Comp. Biochem. Physiol. 60A: 107–109.

    Google Scholar 

  • Richardson, N.E. & J.D. McLeave. 1974. Locomotor activity rhythms of juvenile Atlantic salmon (Salmo salar) in various light conditions. Biol. Bull. 147: 422–432.

    Google Scholar 

  • Richkus, W.A. & H.E. Winn. 1979. Activity cycles of adult and juvenile alewives, Alosa pseudoharengus, recorded by two methods. Trans. Nat. Acad. Sci. U.S.A. 75: 6276–6280.

    Google Scholar 

  • Richter, C.P. 1967. Sleep and activity: their relation to the 24-hour clock. Proc. Assoc. Research on Nervous Mental Disease 45: 8–27.

    Google Scholar 

  • Rosenwasser, A.M., Z. Boulos & M. Terman. 1981. Circadian organization of food intake and meal patterns in the rat. Physiol. Behav. 27: 33–39.

    Google Scholar 

  • Rosenwasser, A.M., R.J. Pelchat & N.T. Adler. 1984. Memory for feeding time: possible dependence on coupled circadian oscillators. Physiol. Behav. 32: 25–30.

    Google Scholar 

  • Rozin, P. & J. Mayer. 1961. Regulation of food intake in the goldfish. Amer. J. Physiol. 201: 968–974.

    Google Scholar 

  • Rusak, B. 1977. The role of the suprachiasmatic nuclei in the generation of circadian rhythms in the golden hamster, Mesocricetus auratus. J. Comp. Physiol. 118: 145–164.

    Google Scholar 

  • Rusak, B. & I. Zucker. 1975. Biological rhythms and animal behavior. Ann. Rev. Psychol. 26: 137–171.

    Google Scholar 

  • Rusak, B. & I. Zucker. 1979. Neural regulation of circadian rhythms. Physiol. Rev. 59: 449–526.

    Google Scholar 

  • Rusak, B., R.E. Mistlberger, B. Losier & C.H. Jones. 1988. Daily hoarding opportunity entrains the pacemaker for hamster activity rhythms. Gen. Comp. Physiol. A 164: 165–171.

    Google Scholar 

  • Rydevik, M., K. Lindahl & G. Fridberg. 1984. Diel pattern of plasma T3 and T4 levels in Baltic salmon part (Salmo salar L.) during two seasons. Can. J. Zool. 62: 643–646.

    Google Scholar 

  • Sagar, P.M. & G.J. Glova. 1988. Diel feeding periodicity, daily ration and prey selection of a riverine population of juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum). J. Fish Biol. 33: 643–653.

    Google Scholar 

  • Sauerbier, I. & W. Meyer. 1977. Circadian rhythms in catecholamine concentrations in organs of the common goldfish (Carassius auratus L.). Comp. Biochem. Physiol. 57C: 117–120.

    Google Scholar 

  • Scheving, L.E., J.E. Pauly, E.R. Burns, F. Halberg, S. Tsai & H.O. Betterton. 1974. Lighting regimen dominates interacting meal schedules and synchronizes mitotic rhythm in mouse corneal epithelium. Anat. Rec. 180: 47–52.

    Google Scholar 

  • Schwassmann, H.O. 1978. Activity rhythms in gymnotoid electric fishes. pp. 235–242. In: J.E. Thorpe (ed.) Rhythmic Activity of Fishes, Academic Press, London.

    Google Scholar 

  • Spieler, R.E. 1977. Diel and seasonal changes in response to stimuli: a plague and a promise for mariculture. Proc. World Maricult. Soc. 8: 865–873.

    Google Scholar 

  • Spieler, R.E. 1979. Diel rhythms of circulating prolactin, cortisol, thyroxine, and triiodothyronine levels in fishes: a review. Rev. Can. Biol. 38: 301–315.

    Google Scholar 

  • Spieler, R.E. & J.J. Clougherty. 1989. Free-running locomotor rhythms of feeding-entrained goldfish. Zool. Sci. 6: 813–816.

    Google Scholar 

  • Spieler, R.E. & T.A. Noeske. 1981. Timing of a single daily meal and diel variations of serum thyroxine, triiodothyronine and cortisol in goldfish, Carassius auratus. Life Sci. 28: 2939–2944.

    Google Scholar 

  • Spieler, R.E. & T.A. Noeske. 1984. Effects of photoperiod and feeding schedule on diel variations of locomotor activity, cortisol, and thyroxine in goldfish. Trans. Amer. Fish. Soc. 113: 528–539.

    Google Scholar 

  • Spieler, R.E., A.H. Meier & H.C. Loesch. 1976. Seasonal variations in circadian levels of serum prolactin in striped mullet, Mugil cephalus. Gen. Comp. Endocrinol. 29: 156–160.

    Google Scholar 

  • Spieler, R.E., A.H. Meier & T.A. Noeske. 1977. Timing a single daily meal affects serum prolactin rhythm in gulf killifish, Fundulus grandis. Life Sci. 22: 225–258.

    Google Scholar 

  • Spieler, R.E., A.H. Meier & T.A. Noeske. 1978. Temperature induced phase shift of daily rhythm of serum prolactin in gulf killifish. Nature 271: 469–470.

    Google Scholar 

  • Srivastava, A.K. & A.H. Meier. 1972. Daily variation in concentration of cortisol in plasma in intact and hypophysectomized gulf killifish. Science 177: 185–187.

    Google Scholar 

  • Steele, C.W. 1984. Diel activity rhythms and orientation of sea catfish (Arius felis) under constant conditions of light and darkness. Mar. Behav. Physiol. 10: 183–198.

    Google Scholar 

  • Steele, C.W. 1985. Absence of a tidal component in the diel pattern of locomotory activity of sea catfish, Arius felis. Env. Biol. Fish. 12: 69–73.

    Google Scholar 

  • Stephan, F.K. 1981. Limits of entrainment to periodic feeding in rats with suprachiasmatic lesions. J. Comp. Physiol. 143: 401–410.

    Google Scholar 

  • Stephan, F.K. 1983. Circadian rhythm dissociation induced by periodic feeding in rats with suprachiasmatic lesions. Behav. Brain Res. 7: 81–98.

    Google Scholar 

  • Stephan, F.K. 1984. Phase shifts of circadian rhythms in activity entrained to food access. Physiol. Behav. 32: 663–671.

    Google Scholar 

  • Stephan, F.K. 1986a. The role of period and phase in interactions between feeding- and light-entrainable circadian rhythms. Physiol. Behav. 36: 151–158.

    Google Scholar 

  • Stephan, F.K. 1986b. Interaction between light- and feeding entrainable circadian rhythms in the rat. Physiol. Behav. 38: 127–133.

    Google Scholar 

  • Stephan, F.K. & I. Zucker. 1972. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Nat. Acad. Sci. U.S.A. 69: 1583–1586.

    Google Scholar 

  • Stephan, F.K., J.M. Swann & C.L. Sisk. 1979a. Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav. Neural Biol. 25: 346–363.

    Google Scholar 

  • Stephan, F.K., J.M. Swann & C.L. Sisk. 1979b. Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions. Behav. Neural Biol. 25: 545–554.

    Google Scholar 

  • Stickney, A.P. 1972. The locomotor activity of the juvenile herring (Clupea harengus harengus L.) in response to changes in illumination. Ecology 53: 438–445.

    Google Scholar 

  • Sulzman, F.M., C.A. Fuller & M.C. Moore-Ede. 1977. Feeding time synchronizes primate circadian rhythms. Physiol. Behav. 18: 775–779.

    Google Scholar 

  • Sulzman, F.M., C.A. Fuller & M.C. Moore-Ede. 1978a. Comparison of synchronization of primate circadian rhythms by light and food. Amer. J. Physiol. 234: R130–R135.

    Google Scholar 

  • Sulzman, F.M., C.A. Fuller, L.G. Hiles & M.C. Moore-Ede. 1978b. Circadian rhythm dissociation in an environment with conflicting temporal information. Amer. J. Physiol. 235: R175–R180.

  • Sundararaj, B.I., P. Nath & F. Halberg. 1982. Circadian meal timing in relation to lighting schedule optimizes catfish body weight gain. J. Nutr. 112: 1085–1097.

    Google Scholar 

  • Sundby, A., K.A. Eliassen, A.K. Blom & T. Åsgård. 1991. Plasma insulin, glucagon, glucagon-like peptide and glucose levels in response to feeding, starvation and life long restricted feed ration in salmonids. Fish Physiol. Biochem. 9: 253–259.

    Google Scholar 

  • Swift, D.R. 1962. Activity cycles in the brown trout (Salmo trutta Lin.) 1. Fish feeding naturally. Hydrobiologia 20: 241–246.

    Google Scholar 

  • Swift, D.R. 1964. Activity cycles in the brown trout (Salmo trutta L.) 2. Fish artificially fed. J. Fish. Res. Board Can. 21: 133–138.

    Google Scholar 

  • Tabata, M., M. Minh-Nyo & M. Oguri. 1988. Involvement of retinal and extraretinal photoreceptors in the mediation of nocturnal locomotor activity rhythms in the catfish, Silurus asotus. Exp. Biol. 47: 219–225.

    Google Scholar 

  • Tanaka, K., Y. Mugiya & J. Yamada. 1981. Effects of photoperiod and feeding on daily growth patterns in otoliths of juvenile Tilapia nilotica. U.S. Fish. Bull. 79: 459–466.

    Google Scholar 

  • Thia-Eng, C. & T. Seng-Keh. 1978. Effects of feeding frequency on the growth of young estuary grouper, Epinephelus tauvina (Forskal), cultured in floating net-cages. Aquaculture 14: 31–47.

    Google Scholar 

  • Underwood, H. 1977. Circadian organization in lizards: the role of the pineal organ. Science 195: 587–589.

    Google Scholar 

  • Underwood, H. 1989. The pineal and melatonin: regulators of circadian function in lower vertebrates. Experientia 45: 914–922.

    Google Scholar 

  • Uvnas-Moberg, K. 1990. Endocrinologic control of food intake. Nutr. Rev. 48: 57–63.

    Google Scholar 

  • Van Bergeijk, W.A. 1967. Anticipatory feeding behaviour in the bullfrog (Rana catesbeiana). Anim. Behav. 15: 231–238.

    Google Scholar 

  • Van den Driessche, T. 1989. The molecular mechanism of circadian rhythms. Int. Physiol. Biochem. 97: 1–11.

    Google Scholar 

  • Van Veen, T., H.G. Hartwig & K. Müller. 1976. Light-dependent motor activity and photo negative behavior in the eel (Anguilla anguilla L.). J. Comp. Physiol. 111: 209–219.

    Google Scholar 

  • Varanelli, C.C. & J.D. McCleave. 1974. Locomotor activity of Atlantic salmon parr (Salmo salar L.) in various light conditions and in weak magnetic fields. Anim. Behav. 22: 178–186.

    Google Scholar 

  • Villiers, L. 1982. The feeding of juvenile goby Deltentosteus quadrimaculatus (Pisces, Gobiidae). Sarsia 67: 157–162.

    Google Scholar 

  • Walsh, G., R. Morin & R.J. Naiman. 1988. Daily rations, diel feeding activity and distribution of age-0 brook charr, Salvelinus fontinalis, in two subarctic streams. Env. Biol. Fish. 21: 195–205.

    Google Scholar 

  • Weber, D.N. & R.E. Spieler. 1987. Effects of the light-dark cycle and scheduled feeding on behavioral and reproductive rhythms of the cyprinodont fish, medaka, Oryzias latipes. Experientia 43: 621–624.

    Google Scholar 

  • Weld, M.M. & A.H. Meier. 1984. Circadian responses of gonads and fat stores to handling of gulf killifish. Trans. Amer. Fish. Sco. 113: 521–527.

    Google Scholar 

  • York, D.A. 1990. Metabolic regulation of food intake. Nutr. Rev. 48: 64–70.

    Google Scholar 

  • Zachmann, A., J. Falcôn, S.C.M. Knijff, V. Bolliet & M.A. Ali. 1992a. Effects of photoperiod and temperature on rhythmic melatonin secretion from the pineal organ of the white sucker (Catostomus commersoni) in vitro. Gen. Comp. Endocrinol. (in press).

  • Zachmann, A., S.C.M. Knijff, M.A. Ali & M. Anctil. 1992b. Effects of photoperiod and different intensities of light exposure on melatonin levels in the blood, pineal organ and retina of the brook trout (Salvelinus fontinalis Mitchill). Can. J. Zool. (in press).

  • Zachmann, A., S.C.M. Knijff, V. Bolliet & M.A. Ali. 1992c. Effects of temperature cycles and photoperiod on rhythmic melatonin secretion from the pineal organ of a teleost (Catostomus commersoni) in vitro. Neuroendocrinol. Lett. (in press).

  • Zanuy, S. & M. Carrillo. 1981. Variaciones diarias de los acidos grasos de Sarotherodon mossambicus (Peters) expuestos a diferentes fotoperiodos. Invest. Pesquera 45: 301–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boujard, T., Leatherland, J.F. Circadian rhythms and feeding time in fishes. Environ Biol Fish 35, 109–131 (1992). https://doi.org/10.1007/BF00002186

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00002186

Key words

Navigation