Skip to main content
Log in

Osmoregulation in juvenile and adult white sturgeon, Acipenser transmontanus

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Blood samples from cannulated young adult (2.5–15 kg) white sturgeon, acclimated to San Francisco Bay water (24 ppt) had plasma values of 248.8 ± 13.5 mOsm kg−1 H2O, [Na+] = 125 ± 8.0 mEq 1−1, [K+] = 2.6 ± 0.8 mEq 1−1 and [CL] = 122 ± 3.0 mEq 1−1. Freshwater acclimated sturgeon had an osmolality of 236 ± 7, [Na+] = 131.6 + 4.4, [K+] = 2.5 ± 0.7 and [CL] = 110.6 ± 3.6. Freshwater acclimated fish gradually exposed to sea water (increase of 5 ppt h−1) had higher plasma osmolalities than did the bay water acclimated fish. These young adult sturgeon are able to tolerate transfer from fresh water to sea water as well as gradual transfer from sea water to fresh water. Plasma electrolytes in transferred fish are regulated, but tend to differ from long term acclimated fish at the same salinities. There is a gradual increase in the upper salinity tolerance (abrupt transfer) of juvenile white sturgeon with weight: 5–10 ppt for 0.4–0.9 g fish, 10–15 ppt for 0.7–1.8 g fish, and 15 ppt for 4.9–50.0 g fish. The ability of juveniles to regulate plasma osmolality is limited. The young adult fish are able to tolerate higher salinities (35 ppt) than juvenile sturgeon but probably are also characterized by low activity of the necessary ion exchange mechanisms in the gills which permit rapid adjustment of blood electrolytes with graduate change in external salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Ball, J.J., I. Chester Jones, M.E. Forester, G. Hargreaves, E.F. Hawkins & K.P. Milne. 1971. Measurement of plasma cortisol levels in the eel, Anguilla anguilla in relation to osmotic adjustments. J. Endocrinol. 50: 75–96.

    CAS  Google Scholar 

  • Clarke, W.C. 1982. Evaluation of the seawater challenge test as an index of marine survival. Aquaculture 28: 177–183.

    Article  Google Scholar 

  • Conte, F.P. & H.H. Wagner. 1965. Development of osmotic and ionic regulation in juvenile steelhead trout, Salmo gairdneri. Comp. Biochem. Physiol. 14: 603–620.

    Article  CAS  Google Scholar 

  • Doneen, B.A. 1976. Water movement in the urinary bladder of the gobiid teleost Gillichthys mirabilis in response to prolactin and cortisol. Gen. Comp. Endocrinol. 28: 33–41.

    Article  CAS  Google Scholar 

  • Doneen, B.A. & H.A. Bern. 1974. In vitro effect of prolactin and cortisol on water permeability of the urinary bladder of the teleost Gillichthys mirabilis. J. Exp. Zool. 187: 173–179.

    Article  CAS  Google Scholar 

  • Doroshov, S. 1985. The biology and culture of sturgeon. In: J. Muir & R. Roberts (ed.) Recent Advances in Aquaculture, Croon Helm Publ., London. (in press).

    Google Scholar 

  • Doyle, W.L. & F.H. Epstein. 1972. Effect of cortisol treatment and osmotic adaptation on the chloride cell in the eel, Anguilla rostrata. Cytobiologie 6: 58–73.

    Google Scholar 

  • Farmer, G.J., J.A. Rilter & D. Ashfield. 1978. Seawater adaptation and parr-smolt transformation of juvenile atlantic salmon, Salmo salar. J. Fish. Res. Board Can. 35: 93–10.

    Google Scholar 

  • Forrest, J.N., A.D. Cohen, D.A. Schon & F.H. Epstein. 1973a. Na+ transport and Na-K-ATPase in the gills during adaptation to seawater: effects of cortisol. Amer. J. Physiol. 224: 709–713.

    CAS  Google Scholar 

  • Forrest, J.N., W.C. Mackay, B. Gallager & F.H. Epstein. 1973b. Plasma cortisol response to saltwater adaptation in the American eel, Anguilla rostrata. Amer. J. Physiol. 224: 714–717.

    CAS  Google Scholar 

  • Foskett, J.K., C.D. Logsdon, T. Turner, T.E. Machen & H.A. Bern. 1981. Differentiation of the choride cell extrusion mechanism during seawater adaptation of a teleost fish, the cichlid Sarothodon mossambicus. J. Exp. Biol. 94: 209–224.

    Google Scholar 

  • Foskett, J.K. & C. Scheffey. 1982. The chloride cell: definitive identification as the salt secretory cell in teleosts. Science 215: 164–165.

    CAS  Google Scholar 

  • Foskett, J.K., H.A. Bern, T.E. Machen & M. Conner. 1983. Chloride cells and the hormonal control of teleost fish osmoregulation. J. Exp. Biol. 106: 255–281.

    CAS  Google Scholar 

  • Hickmann, C.P., Jr. 1959. The osmoregulatory role of the thyroid gland in the starry flounder, Platichthyes stellatus. Can. J. Zool. 37: 997–1060.

    Article  Google Scholar 

  • Hirano, T. & N. Mayer-Gostan. 1976. The eel esophagus as an osmoregulatory organ. Proc. Nat. Acad. Sci. USA 73: 1348–1350.

    Article  CAS  Google Scholar 

  • Hirano, T., M. Morisawa, M.T. Ando & S. Utida, 1975. Adaptive changes in ion and water transport mechanisms in the eel intestine. pp. 301–317. In: J.W.L. Robinson.

    Google Scholar 

  • Hirano, T. 1980. Effects of cortisol and prolactin in ion permeability of the eel esophagus. pp. 143–150. In: B. Lahlou.

    Google Scholar 

  • Loretz, C.A., N.L. Collie, N.H. Richman III & H.A. Bern. 1982. Osmoregulatory changes accompanying smoltification in coho salmon. Aquaculture 28: 67–74.

    Article  Google Scholar 

  • Løvtrup, S. 1977. The phylogeny of the vertebrates. John Wiley and Sons, New York. 330 pp.

    Google Scholar 

  • Magnin, E. 1962. Rescherches sur la systematique et la biologic des Acipenserides. Res. Piscoles, Ministere de l'Agriculture, Paris, Annls. Stat. Cent. d'Hydrobiol. Appl. 9: 7–244.

    Google Scholar 

  • Mayer, N., J. Maetz, D.K.O. Chan, M. Forster & I. Chester Jones. 1967. Cortisol, a sodium excreting factor in the eel (Anguilla anguilla L.) adapted to sea water. Nature 214: 1118–1120.

    Article  CAS  Google Scholar 

  • Nelson, J.S. 1976. Fishes of the world. John Wiley & Sons, New York. 416 pp.

    Google Scholar 

  • Nordlie, F.G., W.A. Szelistowski & W.C. Nordlie. 1982. Ontogenesis of osmotic regulation in the striped mullet, Mugil cephalus (L.). J. Fish Biol. 20: 79–86.

    Article  Google Scholar 

  • Oide, M. & S. Utida. 1967. Changes in water and ion transport in isolated intestine of the eel during salt-water adaptation and migration. Mar. Biol 1: 102–106.

    Article  Google Scholar 

  • Parry, G. 1958. Size and osmoregulation in salmonid fishes. Nature 161: 1218–1219.

    Article  Google Scholar 

  • Parry, G. 1960. The development of salinity tolerance in the salmon, Salmo salar (L.), and some related species. J. Exp. Biol. 37: 411–427.

    Google Scholar 

  • Parry, G. 1961. Osmotic and ionic changes in the muscle of migrating salmonids. J. Exp. Biol. 38: 411–427.

    CAS  Google Scholar 

  • Potts, W.T.W & P.P. Rudy. 1972. Aspects of osmotic and ionic regulation in the sturgeon. J. Exp. Biol. 56: 703–715.

    Google Scholar 

  • Urist, M.E. & K.A. Van de Putte. 1967. Comparative biochemistry of the blood of fishes. pp. 271–285 In: P.W. Gilbert, R.W. Mathenson & D.P. Hall.

    Google Scholar 

  • Wagner, H.H., F.P. Conte & J.L. Fessler. 1969. Development of osmotic and ionic regulation in two races of chinook salmon, Oncorhynchus tshawytscha. Comp. Biochem. Physiol. 29: 325–341.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McEnroe, M., Cech, J.J. Osmoregulation in juvenile and adult white sturgeon, Acipenser transmontanus . Environ Biol Fish 14, 23–30 (1985). https://doi.org/10.1007/BF00001573

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00001573

Keywords

Navigation