Skip to main content
Log in

PASTA: a parallel sparse tensor algorithm benchmark suite

  • Regular Paper
  • Published:
CCF Transactions on High Performance Computing Aims and scope Submit manuscript

Abstract

Tensor methods have gained increasingly attention from various applications, including machine learning, quantum chemistry, healthcare analytics, social network analysis, data mining, and signal processing, to name a few. Sparse tensors and their algorithms become critical to further improve the performance of these methods and enhance the interpretability of their output. This work presents a sparse tensor algorithm benchmark suite (PASTA) for single- and multi-core CPUs. To the best of our knowledge, this is the first benchmark suite for sparse tensor world. PASTA targets on: (1) helping application users to evaluate different computer systems using its representative computational workloads; (2) providing insights to better utilize existed computer architecture and systems and inspiration for the future design. This benchmark suite is publicly released at https://gitlab.com/tensorworld/pasta, under version 0.1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Our convention for the dimensions of \(\mathbf {U}\) differs from that of Kolda and Bader’s definition (Kolda and Bader 2009). In particular, we transpose the matrix modes \(\mathbf {U}\), which leads to a more efficient Ttm under the row-major storage convention of the C language.

References

  • Abadi, M., et al.: Large-Scale Machine Learning on Heterogeneous Systems, 2015. TensorFlow, Google Brain Team, California (2015)

    Google Scholar 

  • Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., Yener, B.: Multiway analysis of epilepsy tensors. Bioinformatics 23(13), i10–i18 (2007). https://doi.org/10.1093/bioinformatics/btm210

    Article  Google Scholar 

  • Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations for incomplete data. Chemometr. Intell. Lab. Syst. 106(1), 41–56 (2011)

    Article  Google Scholar 

  • Acar, E., Kolda, T.G., Dunlavy, D.M.: All-at-once optimization for coupled matrix and tensor factorizations. (2011)

  • Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. J. Mach. Learn. Res. 15(1), 2773–2832 (2014)

    MathSciNet  MATH  Google Scholar 

  • Austin, W., Ballard, G., Kolda, T.G.: Parallel tensor compression for large-scale scientific data. In: 2016 IEEE international parallel and distributed processing symposium (IPDPS), pp. 912–922. https://doi.org/10.1109/IPDPS.2016.67

  • Bader, B.W., Kolda, T.G.: Efficient MATLAB computations with sparse and factored tensors. SIAM J. Sci. Comput. 30(1), 205–231 (2007). https://doi.org/10.1137/060676489

    Article  MathSciNet  MATH  Google Scholar 

  • Bader, B.W., Kolda, T.G. et al. MATLAB Tensor Toolbox (Version 3.0-dev) (2017). https://www.tensortoolbox.org

  • Battaglino, C., Ballard, G., Kolda, T.G.: A practical randomized CP tensor decomposition. SIAM J. Matrix Anal. Appl. 39(2), 876–901 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Benson, A.R., Gleich, D.F., Leskovec, J.: Tensor spectral clustering for partitioning higher-order network structures. arXiv:1502.05058 (2015)

  • Beutel, A., Kumar, A., Papalexakis, E., Talukdar, P.P., Faloutsos, C., Xing, E.P.: FLEXIFACT: scalable flexible factorization of coupled tensors on hadoop. In: NIPS 2013 big learning workshop (2013)

  • Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: characterization and architectural implications. In Proceedings of the 17th international conference on parallel architectures and compilation techniques, ACM, pp. 72–81 (2008)

  • Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011). https://doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  • Bro, R., Sidiropoulos, N.D., Giannakis, G.B.: A fast least squares algorithm for separating trilinear mixtures. In Independent Component Analysis (1999)

  • Calvin, J.A., Valeev, E.F.: TiledArray: a massively-parallel, block-sparse tensor framework (Version v0.6.0). Available from https://github.com/valeevgroup/tiledarray. (2016)

  • Cao, B., He, L., Kong, X., Philip, S.Y., Hao, Z., Ragin, A.B.: Tensor-based multi-view feature selection with applications to brain diseases. In: Data Mining (ICDM), 2014 IEEE international conference on, pp. 40–49 (2014). https://doi.org/10.1109/ICDM.2014.26

  • Cao, B., Kong, X., Yu, P.S.: A review of heterogeneous data mining for brain disorders. arXiv:abs/1508.01023 (2015)

  • Carroll, J.D., Chang, J.-J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970). https://doi.org/10.1007/BF02310791

    Article  MATH  Google Scholar 

  • Carroll, J.D., Pruzansky, S., Kruskal, J.B.: CANDELINC: a general approach to multidimensional analysis of many-way arrays with linear constraints on parameters. Psychometrika 45(1980), 3–24 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S., Skadron, K.: Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE international symposium on workload characterization (IISWC), pp. 44–54 (2009). https://doi.org/10.1109/IISWC.2009.5306797

  • Cheng, D., Peng, R., Liu, Y., Perros, I.: SPALS: fast alternating least squares via implicit leverage scores sampling. In Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.), Advances in neural information processing systems 29, Curran Associates, Inc., pp. 721–729. http://papers.nips.cc/paper/6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf (2016)

  • Chi, E.C., Kolda, T.G.: On tensors, sparsity, and nonnegative factorizations. SIAM J. Matrix Anal. Appl. 33(4), 1272–1299 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Choi, J., Liu, X., Smith, S., Simon, T.: Blocking optimization techniques for sparse tensor computation. pp. 568–577 (2018). https://doi.org/10.1109/IPDPS.2018.00066

  • Choi, J.H., Vishwanathan, S.: DFacTo: Distributed Factorization of Tensors. In: Ghahramani, Z., Welling, M.C., Cortes, N.D., Lawrence, Weinberger, K.Q. (eds.), Advances in neural information processing systems 27, Curran Associates, Inc., pp. 1296–1304 (2014)

  • Cichocki, A.: Tensor decompositions: a new concept in brain data analysis? arXiv:1305.0395 (2013)

  • Cichocki, A.: Era of big data processing: a new approach via tensor networks and tensor decompositions. arXiv:abs/1403.2048 (2014)

  • Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H.A.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis. Signal Process. Magz. IEEE 32(2), 145–163 (2015). https://doi.org/10.1109/MSP.2013.2297439

    Article  Google Scholar 

  • Cichocki, A., Lee, N., Oseledets, I.V., Phan, A., Zhao, Q., Mandic, D.: Low-rank tensor networks for dimensionality reduction and large-scale optimization problems: perspectives and challenges PART 1. (2016). arXiv:cs.NA/1609.00893

  • Cohen, N., Sharir, O., Shashua, A.: On the expressive power of deep learning: a tensor analysis. arXiv:abs/1509.05009 (2015)

  • Davidson, I., Gilpin, S., Carmichael, O., Walker, P.: Network discovery via constrained tensor analysis of fMRI Data. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining(KDD ’13). ACM, New York, pp. 194–202 (2013). https://doi.org/10.1145/2487575.2487619

  • De Lathauwer, L.: Decompositions of a higher-order tensor in block terms-part I: lemmas for partitioned matrices. SIAM J. Matrix Anal. Appl. 30(3), 1022–1032 (2008). https://doi.org/10.1137/060661685

    Article  MathSciNet  MATH  Google Scholar 

  • De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(2000), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and Rank-(R1,R2,.,RN) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000). https://doi.org/10.1137/S0895479898346995

    Article  MathSciNet  MATH  Google Scholar 

  • De Lathauwer, L., Vervliet, N., Boussé, M., Debals, O.: Dealing with curse and blessing of dimensionality through tensor decompositions. (2017)

  • Dixit, K.M.: The SPEC benchmarks. Parallel Comput. 17(10–11), 1195–1209 (1991)

    Article  Google Scholar 

  • Eldén, L., Savas, B.: A Newton–Grassmann method for computing the best multilinear rank-(\({r}_1,\,{r}_2,\,{r}_3\)) approximation of a tensor. SIAM J. Matrix Anal. Appl. 31(2), 248–271 (2009). https://doi.org/10.1137/070688316

  • Epifanovsky, E., Wormit, M., Kuś, T., Landau, A., Zuev, D., Khistyaev, K., Manohar, P., Kaliman, I., Dreuw, A., Krylov, A.I.: New implementation of high-level correlated methods using a general block tensor library for high-performance electronic structure calculations. J. Comput. Chem. 34(26), 2293–2309 (2013). https://doi.org/10.1002/jcc.23377

    Article  Google Scholar 

  • Evenbly, G., Vidal, G.: Algorithms for entanglement renormalization. Phys. Rev. B 79(14), 144108 (2009)

    Article  Google Scholar 

  • Fang, X., Pan, R.: Fast DTT: a near linear algorithm for decomposing a tensor into factor tensors. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 967–976 (2014)

  • Giovannetti, V., Montangero, S., Fazio, R.: Quantum multiscale entanglement renormalization ansatz channels. Phys. Rev. Lett. 101(18), 180503 (2008)

    Article  Google Scholar 

  • Gorodetsky, A.A., Sertac, K., Youssef, M.M.: Efficient high-dimensional stochastic optimal motion control using tensor-train decomposition (2008)

  • Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2010). https://doi.org/10.1137/090764189

    Article  MathSciNet  MATH  Google Scholar 

  • Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36(1), 53–78 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009). https://doi.org/10.1007/s00041-009-9094-9

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, S., Plantenga, T., Kolda, T.G.: Newton-based optimization for Kullback–Leibler nonnegative tensor factorizations. Optim. Methods Softw. 30(2015), 1002–1029 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Harshman, R., Lundy, M.: Uniqueness proof for a family of models sharing features of Tucker’s three-mode factor analysis and PARAFAC/Candecomp. Psychometrika 61(1), 133–154 (1996). http://EconPapers.repec.org/RePEc:spr:psycho:v:61:y:1996:i:1:p:133-154

  • Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis. UCLA Work. Pap. Phonetic 16(1), 84 (1970)

    Google Scholar 

  • Harshman, R.A.: PARAFAC2: mathematical and technical notes. UCLA Work. Pap. Phonetic 22, 30–44 (1972)

    Google Scholar 

  • Hein, E., Conte, T., Young, J.S., Eswar, S., Li, J., Lavin, P., Vuduc, R., Riedy, J.: An initial characterization of the Emu Chick. 2018 IEEE international parallel and distributed processing symposium workshops, p. 10 (2018)

  • Henderson, J., Ho, J.C., Kho, A.N., Denny, J.C., Malin, B.A., Sun, J., Ghosh, J.: Granite: diversified, sparse tensor factorization for electronic health record-based phenotyping. In: 2017 IEEE international conference on healthcare informatics (ICHI), pp. 214–223 (2017). https://doi.org/10.1109/ICHI.2017.61

  • Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys 6(1), 164–189 (1927)

    Article  MATH  Google Scholar 

  • Ho, J.C., Ghosh, J., Steinhubl, S.R., Stewart, W.F., Denny, J.C., Malin, B.A., Sun, J.: Limestone: high-throughput candidate phenotype generation via tensor factorization. J. Biomed. Inf. 52(2014), 199–211 (2014c)

    Article  Google Scholar 

  • Ho, J.C., Ghosh, J., Sun, J.: Extracting phenotypes from patient claim records using nonnegative tensor factorization. In: Brain informatics and health, Springer, pp. 142–151 (2014a)

  • Ho, J.C., Ghosh, J., Sun, J.: Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining(KDD ’14), ACM, New York, pp. 115–124 (2014b). https://doi.org/10.1145/2623330.2623658

  • Hutchinson, B., Deng, L., Dong, Y.: Tensor deep stacking networks. Pattern Anal. Mach. Intell. IEEE Trans. 35(8), 1944–1957 (2013)

    Article  Google Scholar 

  • Ishteva, M., Absil, P., Van Huffel, S., De Lathauwer, L.: Best low multilinear rank approximation of higher-order tensors, based on the Riemannian trust-region scheme. SIAM J. Matrix Anal. Appl. 32(1), 115–135 (2011). https://doi.org/10.1137/090764827

    Article  MathSciNet  MATH  Google Scholar 

  • Janzamin, M., Sedghi, H., Anandkumar, A.: Generalization bounds for neural networks through tensor factorization. arXiv:abs/1506.08473 (2015)

  • Jeon, I., Papalexakis, E.E., Kang, U., Faloutsos, C.: HaTen2: billion-scale tensor decompositions (Version 1.0). http://datalab.snu.ac.kr/haten2/. (2015)

  • Jiang, M., Cui, P., Wang, F., Xu, X., Zhu, W., Yang, S.: FEMA: flexible evolutionary multi-faceted analysis for dynamic behavioral pattern discovery. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp. 1186–1195 (2014)

  • Jiang, T., Sidiropoulos, N.D.: Kruskal’s permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints. Signal Process. IEEE Trans. 52(9), 2625–2636 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Cantin, P.-l., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T.V., Gottipati, R., Gulland, W., Hagmann, R., Ho, C.R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., Yoon, D.H.: In-datacenter performance analysis of a tensor processing unit. In: Proceedings of the 44th annual international symposium on computer architecture(ISCA ’17). ACM, New York, NY, pp. 1–12.https://doi.org/10.1145/3079856.3080246

  • Kaliman, I.A., Krylov, A.I.: New algorithm for tensor contractions on multi-core CPUs, GPUs, and accelerators enables CCSD and EOM-CCSD calculations with over 1000 basis functions on a single compute node. J. Comput. Chem. 38(11), 842–853 (2017). https://doi.org/10.1002/jcc.24713

    Article  Google Scholar 

  • Kang, U., Papalexakis, E., Harpale, A., Faloutsos, C.: GigaTensor: scaling tensor analysis up by 100 times - algorithms and discoveries. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining(KDD ’12). ACM, New York, pp. 316–324 (2012). https://doi.org/10.1145/2339530.2339583

  • Kapteyn, A., Neudecker, H., Wansbeek, T.: An approach to n-mode components analysis. Psychometrika 51(2), 269–275 (1986). https://doi.org/10.1007/BF02293984

    Article  MathSciNet  MATH  Google Scholar 

  • Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the 4th ACM conference on recommender systems(RecSys ’10). ACM, New York, pp. 79–86 (2010). https://doi.org/10.1145/1864708.1864727

  • Karlsson, L., Kressner, D., Uschmajew, A.: Parallel algorithms for tensor completion in the CP format. Parallel Comput. 57(2016), 222–234 (2016). https://doi.org/10.1016/j.parco.2015.10.002

    Article  MathSciNet  Google Scholar 

  • Kaya, O., Uçar, B.: Scalable sparse tensor decompositions in distributed memory systems. In: Proceedings of the international conference for high performance computing, networking, storage and analysis(SC ’15). ACM, New York, Article 77, p. 11 (2015). https://doi.org/10.1145/2807591.2807624

  • Kaya, O., Uçar, B.: Parallel candecomp/parafac decomposition of sparse tensors using dimension trees. SIAM J. Sci. Comput. 40(1), C99–C130 (2018). https://doi.org/10.1137/16M1102744

    Article  MathSciNet  MATH  Google Scholar 

  • Khoromskaia, V., Khoromskij, B.N.: Tensor numerical methods in quantum chemistry. Walter de Gruyter GmbH & Co KG (2018)

  • Kiers, H.A.L., der Kinderen, A.: A fast method for choosing the numbers of components in Tucker3 analysis. Br. J. Math. Stat. Psychol. 56(1), 119–125 (2003)

    Article  MathSciNet  Google Scholar 

  • KleinOsowski, A.J., Lilja, D.J.: MinneSPEC: a new SPEC benchmark workload for simulation-based computer architecture research. IEEE Comput. Archit. Lett. 1(1), 7–7 (2002)

    Article  Google Scholar 

  • Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). https://doi.org/10.1137/07070111X

    Article  MathSciNet  MATH  Google Scholar 

  • Kolda, T.G., Bader, B.W.: The TOPHITS model for higher-order web link analysis. Workshop Link Anal. Counterterror. Secur. 7, 26–29 (2006)

    Google Scholar 

  • Kolda, T.G., Sun, J.: Scalable tensor decompositions for multi-aspect data mining. In: Proceedings of the 2008 eighth IEEE international conference on data mining(ICDM ’08). IEEE Computer Society, Washington, DC, pp. 363–372 (2008). https://doi.org/10.1109/ICDM.2008.89

  • Köppl, C., Werner, H.-J.: Parallel and low-order scaling implementation of hartree-fock exchange using local density fitting. J. Chem. Theory Comput. 12(7), 3122–3134 (2016). https://doi.org/10.1021/acs.jctc.6b00251

    Article  Google Scholar 

  • Latchoumane, C.-F.V. Vialatte, F.-B., Solé-Casals, J., Maurice, M., Wimalaratna, S.R. Hudson, N., Jeong, J., Cichocki, A.: Multiway array decomposition analysis of EEGs in Alzheimer’s disease. J. Neurosci. Methods207(1), 41–50 (2012)

  • Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.: Speeding-up convolutional neural networks using fine-tuned CP-decomposition. arXiv:1412.6553 (2014)

  • Lee, C, Potkonjak, M, Mangione-Smith, W.H., MediaBench: a tool for evaluating and synthesizing multimedia and communications systems. In Proceedings of the 30th annual ACM/IEEE international symposium on Microarchitecture, IEEE Computer Society, pp. 330–335 (1997)

  • Lewis, C.A., Calvin, J.A., Valeev, E.F.: Clustered low-rank tensor format: introduction and application to fast construction of Hartree-Fock exchange. J. Chem. Theory Comput. 12(12), 5868–5880 (2016). https://doi.org/10.1021/acs.jctc.6b00884

    Article  Google Scholar 

  • Li, A., Song, S.L., Chen, J., Liu, X., Tallent, N., Barker, K.: Tartan: evaluating modern GPU interconnect via a multi-GPU benchmark suite. In: 2018 IEEE international symposium on workload characterization (IISWC), IEEE, pp. 191–202 (2018)

  • Li, J.: Scalable tensor decompositions in high performance computing environments. Ph.D. Dissertation. Georgia Institute of Technology, Atlanta, GA (2018)

  • Li, J., Choi, J., Perros, I., Sun, J., Vuduc, R.: Model-driven sparse CP decomposition for higher-order tensors. In: 2017 IEEE international parallel and distributed processing symposium (IPDPS), pp. 1048–1057 (2017). https://doi.org/10.1109/IPDPS.2017.80

  • Li, J., Ma, Y., Vuduc, R.: ParTI!: a parallel tensor infrastructure for multicore CPU and GPUs (Version 1.0.0). https://github.com/hpcgarage/ParTI. (2018)

  • Li, J., Ma, Y., Yan, C., Vuduc, R.: Optimizing sparse tensor times matrix on multi-core and many-core architectures. In: Proceedings of the 6th workshop on irregular applications: architectures and algorithms (IA3 ’16). IEEE Press, Piscataway, pp. 26–33 (2016). https://doi.org/10.1109/IA3.2016.10

  • Li, J., Sun, J., Vuduc, R.: HiCOO: hierarchical storage of sparse tensors. In: Proceedings of the ACM/IEEE international conference on high performance computing, networking, storage and analysis (SC), Dallas, TX (2018)

  • Li, J., Tan, G., Chen, M., Sun, N.: SMAT: an input adaptive auto-tuner for sparse matrix-vector multiplication. In: Proceedings of the 34th ACM SIGPLAN conference on programming language design and implementation(PLDI ’13), ACM, New York, pp. 117–126 (2013). https://doi.org/10.1145/2491956.2462181

  • Li, J., Uçar, B., Çatalyürek, Ü.V., Sun, J., Barker, K., Vuduc, R.: Efficient and effective sparse tensor reordering. In: Proceedings of the ACM international conference on supercomputing(ICS ’19). ACM, New York, pp. 227–237 (2019). https://doi.org/10.1145/3330345.3330366

  • Li, Z., Uschmajew, A., Zhang, S.: On Convergence of the maximum block improvement method. SIAM J. Optim. 25(1), 210–233 (2015). https://doi.org/10.1137/130939110

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, B., Wen, C., Sarwate, A.D., and Dehnavi, M.M.: A unified optimization approach for sparse tensor operations on GPUs. In: 2017 IEEE international conference on cluster computing (CLUSTER), pp. 47–57 (2017). https://doi.org/10.1109/CLUSTER.2017.75

  • Ma, Y., Li, J., Wu, X., Yan, C., Sun, J., Vuduc, R.: Optimizing sparse tensor times matrix on GPUs. J. Parallel Distrib. Comput. (2018). https://doi.org/10.1016/j.jpdc.2018.07.018

  • Manzer, S., Epifanovsky, E., Krylov, A.I., Head-Gordon, M.: A general sparse tensor framework for electronic structure theory. J. Chem. Theory Comput. 13(3), 1108–1116 (2017). https://doi.org/10.1021/acs.jctc.6b00853

    Article  Google Scholar 

  • Matsubara, Y., Sakurai, Y., van Panhuis, W.G., Faloutsos, C.: FUNNEL: automatic mining of spatially coevolving epidemics. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp. 105–114 (2014)

  • Mohlenkamp, M.J.: Musings on multilinear fitting (2010)

  • Mørup, M., Hansen, L.K., Arnfred, S.M., Lim, L., Madsen, K.H.: Shift invariant multilinear decomposition of neuroimaging data. Accept Publ. NeuroImage 42(4), 1439–50 (2008). http://www2.imm.dtu.dk/pubdb/p.php?5551

  • Nakatani, N., Chan, G.K.-L.: Efficient tree tensor network states (TTNS) for quantum chemistry: generalizations of the density matrix renormalization group algorithm. J. Chem. Phys. 138(13), 134113 (2013). https://doi.org/10.1063/1.4798639

    Article  Google Scholar 

  • Nisa, I., Li, J., Sukumaran-Rajam, A., Vuduc, R.W., Sadayappan, P.: Load-balanced Sparse MTTKRP on GPUs. (2019). arXiv:1904.03329

  • Novikov, A., Izmailov, P., Khrulkov, V., Figurnov, M., Oseledets, I.V.: Tensor train decomposition on TensorFlow (T3F). arXiv:abs/1801.01928 (2018)

  • Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.: Tensorizing neural networks. arXiv:abs/1509.06569 (2015)

  • Novikov, A., Rodomanov, A., Osokin, A., Vetrov, D.: Putting MRFs on a tensor train. In: Tony J., Eric P.X. (Eds.), Proceedings of the 31st international conference on machine learning (ICML-14), JMLR Workshop and Conference Proceedings, pp. 811–819 (2014). http://jmlr.org/proceedings/papers/v32/novikov14.pdf

  • Oh, H.: Tensors in power system computation I: distributed computation for optimal power flow, DC OPF. arXiv:abs/1605.06735 (2016)

  • Orús, R.: A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349(2014), 117–158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011). https://doi.org/10.1137/090752286

    Article  MathSciNet  MATH  Google Scholar 

  • Papalexakis, E.E., Akoglu, L., Ienco, D.: Do more views of a graph help? Community detection and clustering in multi-graphs. In: Proceedings of the 16th international conference on information fusion, FUSION 2013, Istanbul, July 9–12, 2013, pp. 899–905. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6641090

  • Papalexakis, E.E., Faloutsos, C., Mitchell, T.M., Talukdar, P.P., Sidiropoulos, N.D., Murphy, B.: Turbo-SMT: accelerating coupled sparse matrix-tensor factorizations by 200x. Chapter 14, pp. 118–126 (2014). https://doi.org/10.1137/1.9781611973440.14

  • Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: ParCube: sparse parallelizable tensor decompositions. In: Proceedings of the 2012 European conference on machine learning and knowledge discovery in databases - Volume Part I (ECML PKDD’12). Springer, Berlin, pp. 521–536 (2012). https://doi.org/10.1007/978-3-642-33460-3_39

  • Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: ParCube: sparse parallelizable CANDECOMP-PARAFAC tensor decomposition. ACM Trans. Knowl. Discov. Data 10, 1, Article 3, pp. 25 (2015). https://doi.org/10.1145/2729980

  • Papalexakis, E.E., Sidiropoulos, N.D.: Co-clustering as multilinear decomposition with sparse latent factors. In: Acoustics, speech and signal processing (ICASSP), 2011 IEEE international conference on. IEEE, 2064–2067 (2011)

  • Peng, C., Calvin, J.A., Pavošević, F., Zhang, J., Valeev, E.F.: Massively parallel implementation of explicitly correlated coupled-cluster singles and doubles using tiledarray framework. J. Phys. Chem. A 120(51), 10231–10244 (2016). https://doi.org/10.1021/acs.jpca.6b10150

    Article  Google Scholar 

  • Perros, I, Chen, R, Vuduc, R, Sun, J.: Sparse hierarchical tucker factorization and its application to healthcare. In: Proceedings of the 2015 IEEE international conference on data mining (ICDM)(ICDM ’15). IEEE Computer Society, Washington, DC, pp. 943–948 (2015). https://doi.org/10.1109/ICDM.2015.29

  • Perros, I., Papalexakis, E.E., Wang, F., Vuduc, R., Searles, E., Thompson, M., Sun, J.: SPARTan: scalable PARAFAC2 for large & sparse data. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’17). ACM, New York, pp. 375–384 (2017). https://doi.org/10.1145/3097983.3098014

  • Phipps, E.T., Kolda, T.G.: Software for sparse tensor decomposition on emerging computing architectures. arXiv:abs/1809.09175 (2018)

  • Poovey, J.A., Conte, T.M.: Markus Levy, and Shay Gal-On. 2009. A benchmark characterization of the EEMBC benchmark suite. IEEE micro 29, 5 (2009)

  • Rajih, M., Comon, P.: Enhanced line search: a novel method to accelerate Parafac. In: 2005 13th European signal processing conference, pp. 1–4 (2005)

  • Ravindran, N., Sidiropoulos, N.D., Smith, S., Karypis, G.: Memory-efficient parallel computation of tensor and matrix products for big tensor decompositions. Proceedings of the Asilomar conference on signals, systems, and computers (2014)

  • Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’09), ACM, New York, pp. 727–736 (2009). https://doi.org/10.1145/1557019.1557100

  • Reynolds, M., Doostan, A., Beylkin, G.: Randomized alternating least squares for canonical tensor decompositions: application to a PDE with random data. SIAM J. Sci. Comput. 38(5), A2634–A2664 (2016). https://doi.org/10.1137/15M1042802

    Article  MathSciNet  MATH  Google Scholar 

  • Romera-Paredes, B., Aung, M.H., Bianchi-Berthouze, N., Pontil, M.: Multilinear multitask learning. In Proceedings of the 30th international conference on international conference on machine learning, Volume 28 (ICML’13). JMLR.org, III–1444–III–1452 (2013). http://dl.acm.org/citation.cfm?id=3042817.3043098

  • Savas, B., Lim, L.: Quasi-Newton methods on Grassmannians and multilinear approximations of tensors. SIAM J. Sci. Comput. 32(6), 3352–3393 (2010). https://doi.org/10.1137/090763172

    Article  MathSciNet  MATH  Google Scholar 

  • Schein, A., Paisley, J., Blei, D.M., Wallach, H.: Bayesian poisson tensor factorization for inferring multilateral relations from sparse dyadic event counts. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, (KDD ’15). ACM, New York, pp. 1045–1054 (2015). https://doi.org/10.1145/2783258.2783414

  • Sedaghati, N., Mu, T., Pouchet, L.-N., Parthasarathy, S., Sadayappan, P.: Automatic selection of sparse matrix representation on GPUs. In: Proceedings of the 29th ACM on international conference on supercomputing (ICS ’15). ACM, New York, pp. 99–108 (2015). https://doi.org/10.1145/2751205.2751244

  • Setiawan, H., Huang, Z., Devlin, J., Lamar, T., Zbib, R., Schwartz, R.M., Makhoul, J.: Statistical machine translation features with multitask tensor networks. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing of the Asian Federation of natural language processing, ACL 2015, July 26-31, 2015, Beijing, Volume 1: Long Papers, pp. 31–41. (2015). http://aclweb.org/anthology/P/P15/P15-1004.pdf

  • Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Faloutsos, C.: Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 65(13), 3551–3582 (2017). https://doi.org/10.1109/TSP.2017.2690524

    Article  MathSciNet  MATH  Google Scholar 

  • Sidiropoulos, N.D., Giannakis, G.B., Bro, R.: Blind PARAFAC receivers for DS-CDMA systems. Signal Process. IEEE Trans. 48(3), 810–823 (2000)

    Article  Google Scholar 

  • Signoretto, M., Dinh, Q.T., De Lathauwer, L., Suykens, J.A.K.: Learning with tensors: a framework based on convex optimization and spectral regularization. Mach. Learn. 94(3), 303–351 (2014). https://doi.org/10.1007/s10994-013-5366-3

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, S., Beri, A., Karypis, G.: Constrained tensor factorization with accelerated AO-ADMM. In: 46th international conference on parallel processing (ICPP ’17). IEEE (2017)

  • Smith, S., Choi, J.W., Li, J., Vuduc, R., Park, J., Liu, X., Karypis, G.: FROSTT: the formidable repository of open sparse tensors and tools (2017). http://frostt.io/

  • Smith, S., Karypis, G.: Tensor-Matrix products with a compressed sparse tensor. In: Proceedings of the 5th workshop on irregular applications: architectures and algorithms. ACM, 7 (2015)

  • Smith, S, Karypis, G: A medium-grained algorithm for distributed sparse tensor factorization. In: Parallel and distributed processing symposium (IPDPS), 2016 IEEE international, IEEE (2016)

  • Smith, S., Karypis, G.: Accelerating the tucker decomposition with compressed sparse tensors. In: European conference on parallel processing, Springer, New York (2017)

  • Smith, S., Park, J., Karypis, G.: An exploration of optimization algorithms for high performance tensor completion. Proceedings of the 2016 ACM/IEEE conference on supercomputing (2016)

  • Smith, S., Park, J., Karypis, G.: Sparse tensor factorization on many-core processors with high-bandwidth memory. 31st IEEE international parallel & distributed processing symposium (IPDPS’17) (2017)

  • Smith, S., Ravindran, N., Sidiropoulos, N., Karypis, G.: SPLATT: efficient and parallel sparse tensor-matrix multiplication. In: Proceedings of the 29th IEEE international parallel & distributed processing symposium, (IPDPS) (2015)

  • Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: Advances in neural information processing systems, pp. 926–934 (2013)

  • Solomonik, E., Hoefler, T.: Sparse tensor algebra as a parallel programming model. (2015). arXiv:cs.MS/1512.00066

  • Song, C., Martínez, T.J.: Atomic orbital-based SOS-MP2 with tensor hypercontraction. I. GPU-based tensor construction and exploiting sparsity. J. Chem. Phys. 144(17), 174111 (2016). https://doi.org/10.1063/1.4948438

    Article  Google Scholar 

  • Song, H.A., Hooi, B., Jereminov, M., Pandey, A., Pileggi, L.T., Faloutsos, C.: PowerCast: mining and forecasting power grid sequences. In: ECML/PKDD (2017)

  • Song, Z., Woodruff, D.P., Zhang, H.: Sublinear time orthogonal tensor decomposition. In: Proceedings of the 30th international conference on neural information processing systems (NIPS’16), Curran Associates Inc., USA, 793–801 (2016). http://dl.acm.org/citation.cfm?id=3157096.3157185

  • Sorber, L., Domanov, I., Barel, M., Lathauwer, L.: Exact line and plane search for tensor optimization. Comput. Optim. Appl. 63(1), 121–142 (2016). https://doi.org/10.1007/s10589-015-9761-5

    Article  MathSciNet  MATH  Google Scholar 

  • Sorber, L., Van Barel, M., De Lathauwer, L.: Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(\({L}_{r},\,{L}_{r},\,1\)) terms, and a new generalization. SIAM J. Optim. 23(2), 695–720 (2013). https://doi.org/10.1137/120868323

  • Su, B.-Y., Keutzer, K.: clSpMV: a cross-platform OpenCL SpMV Framework on GPUs. In: Proceedings of the 26th ACM international conference on supercomputing (ICS ’12). ACM, New York, pp. 353–364 (2012). https://doi.org/10.1145/2304576.2304624

  • Sun, J., Papadimitriou, S., Lin, C.-Y., Cao, N., Liu, S., Qian, W.: MultiVis: content-based social network exploration through multi-way visual analysis. In: SDM, Vol. 9. SIAM, 1063–1074 (2009)

  • Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’06). ACM, New York, pp. 374–383 (2006). https://doi.org/10.1145/1150402.1150445

  • Sun, J.-T., Zeng, H.-J., Liu, H., Lu, Y., Chen, Z.: CubeSVD: a novel approach to personalized web search. In: Proceedings of the 14th international conference on world wide web (WWW ’05). ACM, New York, 382–390 (2005). https://doi.org/10.1145/1060745.1060803

  • Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based on tensor dimensionality reduction. In: Proceedings of the 2008 ACM conference on recommender systems, (RecSys ’08). ACM, New York, NY, pp. 43–50 (2008). https://doi.org/10.1145/1454008.1454017

  • Tao, D., Li, X., Xindong, W., Weiming, H., Maybank, S.J.: Supervised tensor learning. Knowl. Inf. Syst. 13(1), 1–42 (2007). https://doi.org/10.1007/s10115-006-0050-6

    Article  Google Scholar 

  • Tomasi, G., Bro, R.: A comparison of algorithms for fitting the PARAFAC model. Comput. Stat. Data Anal. 50(7), 1700–1734 (2006). https://doi.org/10.1016/j.csda.2004.11.013

    Article  MathSciNet  MATH  Google Scholar 

  • Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966). https://doi.org/10.1007/BF02289464

    Article  MathSciNet  Google Scholar 

  • Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab (Version 3.0). http://www.tensorlab.net. (2016)

  • Vervliet, N., De Lathauwer, L.: A randomized block sampling approach to canonical polyadic decomposition of large-scale tensors. IEEE J. Select. Top. Signal Process. 10(2), 284–295 (2016). https://doi.org/10.1109/JSTSP.2015.2503260

    Article  Google Scholar 

  • Wang, F., Zhang, P., Qian, B., Wang, X., Davidson, I.: Clinical risk prediction with multilinear sparse logistic regression. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp. 145–154 (2014)

  • Wang, H., Thoss, M.: Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys. 119(3), 1289–1299 (2003). https://doi.org/10.1063/1.1580111

    Article  Google Scholar 

  • Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z., Shi, Y., Zhang, S., Zheng, C., Lu, G., Zhan, K., Li, X., Qiu, B.: . BigDataBench: a big data benchmark suite from internet services. In: 2014 IEEE 20th international symposium on high performance computer architecture (HPCA), pp. 488–499 (2014). https://doi.org/10.1109/HPCA.2014.6835958

  • Wang, Y., Chen, R., Ghosh, J., Denny, J.C., Kho, A., Chen, Y., Malin, B.A., Sun, J.: Rubik: knowledge guided tensor factorization and completion for health data analytics. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’15), ACM, New York, pp. 1265–1274 (2015). https://doi.org/10.1145/2783258.2783395

  • Wimalawarne, K., Sugiyama, M., Tomioka, R.: Multitask learning meets tensor factorization: task imputation via convex optimization. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.), Advances in neural information processing systems 27, Curran Associates, Inc., 2825–2833 (2014). http://papers.nips.cc/paper/5628-multitask-learning-meets-tensor-factorization-task-imputation-via-convex-optimization.pdf

  • Wright, S., Nocedal, J.: Numerical optimization. Spring. Sci. 35(67–68), 7 (1999)

    MATH  Google Scholar 

  • Xu, Y., Zhang, L., Liu, W.: Cubic analysis of social bookmarking for personalized recommendation. In: Xiaofang, Z., Jianzhong, L., HengTao, Shen., Masaru, K., Yanchun, Z. (Eds.), Frontiers of WWW research and development-APWeb 2006, Lecture notes in computer science, Vol. 3841. Springer, Berlin, pp. 733–738 (2006). https://doi.org/10.1007/11610113_66

  • Yu, D., Deng, L., Seide, F.: Large vocabulary speech recognition using deep tensor neural networks. In: INTERSPEECH (2012)

  • Yu, Q.R., Liu, Y.: Learning from multiway data: simple and efficient tensor regression. arXiv:abs/1607.02535 (2016)

  • Yu, R., Li, G., Liu, Y.: Tensor regression meets gaussian processes. arXiv:1710.11345 (2017)

  • Yu, R., Zheng, S., Anandkumar, A., Yue, Y.: Long-term forecasting using tensor-train RNNs. (2018). https://openreview.net/forum?id=HJJ0w--0W

  • Zhang, Z., Batselier, K., Liu, H., Daniel, L., Wong, N.: Tensor computation: a new framework for high-dimensional problems in EDA. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 36(4), 521–536 (2017)

    Article  Google Scholar 

  • Zhang, Z., Yang, X., Oseledets, I.V., Karniadakis, G.E., Daniel, L.: Enabling high-dimensional hierarchical uncertainty quantification by ANOVA and tensor-train decomposition. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 34(1), 63–76 (2015)

    Article  Google Scholar 

  • Zhao, Q., Caiafa, C.F., Mandic, D.P., Zhang, L., Ball, T., Schulze-bonhage, A., Cichocki, A.S.: Multilinear subspace regression: an orthogonal tensor decomposition approach. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q., (eds.), Advances in neural information processing systems 24, Curran Associates, Inc., 1269–1277 (2011). http://papers.nips.cc/paper/4328-multilinear-subspace-regression-an-orthogonal-tensor-decomposition-approach.pdf

  • Zhao, Y., Li, J., Liao, C., Shen, X.: Bridging the gap between deep learning and sparse matrix format selection. In: Proceedings of the 23rd ACM SIGPLAN symposium on principles and practice of parallel programming (PPoPP ’18), ACM, New York, pp. 94–108 (2018). https://doi.org/10.1145/3178487.3178495

  • Zhou, G., Cichocki, A., Xie, S.: Decomposition of big tensors with low multilinear rank. arXiv:abs/1412.1885 (2014)

  • Zhou, H., Li, L., Zhu, H.: Tensor regression with applications in neuroimaging data analysis. J. Am. Stat. Assoc. 108(502), 540–552 (2013). https://doi.org/10.1080/01621459.2013.776499

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the US Department of Energy, Office for Advanced Scientific Computing (ASCR) under Award No. 66150: “CENATE: The Center for Advanced Technology Evaluation”. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. This work was partially supported by the High Performance Data Analytics (HPDA) program at Pacific Northwest National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ma, Y., Wu, X. et al. PASTA: a parallel sparse tensor algorithm benchmark suite. CCF Trans. HPC 1, 111–130 (2019). https://doi.org/10.1007/s42514-019-00012-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42514-019-00012-w

Keywords

Navigation