Skip to main content
Log in

Enhanced thermoelectric properties of two-dimensional conjugated polymers

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Organic thermoelectric materials have drawn great attention in the past years. In this study, we report the thermoelectric properties of ferric salt bis(trifluoromethane)sulfonimide (TFSI) doped two-dimensional (2D) conjugated polymer, poly[[4,8-bis[(5-ethylhexyl)thienyl]benzo[1,2-b;3,3-b]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7-DT). It is found that the electrical conductivities of TFSI doped 2D PTB7-DT are nearly 100 times larger than those of TFSI doped one-dimensional (1D) corresponding conjugate polymer, poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) at the same doping levels. Moreover, TFSI doped 2D PTB7-DT possess over 20 times larger power factor (79.8 μW/mK2) than that of TFSI doped 1D PTB7. The enhancement of electrical conductivities of TFSI doped 2D PTB7-DT is attributed to enhanced charge carrier densities and polaron densities. The studies of grazing incidence wide angle X-ray scattering further indicate that the π-π stacking distances of TFSI doped 2D PTB7-DT along the in-plane direction are largely reduced compared to that of TFSI doped 1D PTB7, which would facilitate the inter-chain and the intra-chain charge carrier transport, resulting in enhanced electrical conductivities. All these results demonstrate that 2D conjugated polymers are promising candidate materials for approaching high performance organic thermoelectric electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.E. Bell, 321, 1457 (2008)

  2. S.K. Yee, S. LeBlanc, K.E. Goodson, C. Dames, Energy Environ. Sci. 6, 2651 (2013)

    Article  Google Scholar 

  3. M. He, F. Qiu, Z. Lin, Energy Environ. Sci. 6, 1352 (2013)

    Article  Google Scholar 

  4. C. Han, Z. Li, S. Dou, Chin. Sci. Bull. 59, 2073 (2014)

    Article  CAS  Google Scholar 

  5. W. Liu, X. Yan, G. Chen, Z. Ren, Nano Energy 1, 42 (2012)

    Article  CAS  Google Scholar 

  6. T. Harman, P. Taylor, D. Spears, IEEE In proc. 18th int. conf. on thermoelectrics, Piscataway, NJ, DOI 280, (1999)

  7. X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, Z.F. Ren, Nano Lett. 10, 3373 (2010)

    Article  CAS  Google Scholar 

  8. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'quinn, Nature 413, 597 (2001)

    Article  CAS  Google Scholar 

  9. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2, 466 (2009)

    Article  CAS  Google Scholar 

  10. F.-X. Jiang, J.-K. Xu, B.-Y. Lu, Y. Xie, R.-J. Huang, L.-F. Li, Chin. Phys. Lett. 25, 2202 (2008)

    Article  CAS  Google Scholar 

  11. N. Toshima, Macromol. Symp. 186, 81 (2002)

    Article  CAS  Google Scholar 

  12. C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 112, 2208 (2012)

    Article  CAS  Google Scholar 

  13. Q. Zhang, Y. Sun, W. Xu, D. Zhu, Energy Environ. Sci. 5, 9639 (2012)

    Article  CAS  Google Scholar 

  14. T. Park, C. Park, B. Kim, H. Shin, E. Kim, Energy Environ. Sci. 6, 788 (2013)

    Article  CAS  Google Scholar 

  15. C. Yi, A. Wilhite, L. Zhang, R. Hu, S.S.C. Chuang, J. Zheng, X. Gong, ACS Appl. Mater. Interfaces 7, 8984 (2015)

    Article  CAS  Google Scholar 

  16. N. Wang, L. Han, H. He, N.-H. Park, K. Koumoto, Energy Environ. Sci. 4, 3676 (2011)

    Article  CAS  Google Scholar 

  17. O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Nat. Mater. 10, 429 (2011)

    Article  CAS  Google Scholar 

  18. H. Wang, S.-i. Yi, X. Pu, C. Yu, ACS Appl. Mater. Interfaces 7, 9589 (2015)

    Article  CAS  Google Scholar 

  19. Y. Wang, J. Yang, L. Wang, K. Du, Q. Yin, Q. Yin, ACS Appl. Mater. Interfaces 9, 20124 (2017)

    Article  CAS  Google Scholar 

  20. Z. Lin, D. Wenya, N. Amit, L. Zhen, Z. Xinyu, Sci. Chin. Mater. 61, 303 (2018)

    Article  Google Scholar 

  21. H.D. Tran, D. Li, R.B. Kaner, Adv. Mater. 21, 1487 (2009)

    Article  CAS  Google Scholar 

  22. J.A. Reedijk, H.C.F. Martens, H.B. Brom, M.A.J. Michels, Phys. Rev. Lett. 83, 3904 (1999)

    Article  CAS  Google Scholar 

  23. H. Pang, F. Vilela, P.J. Skabara, J.J.W. McDouall, D.J. Crouch, T.D. Anthopoulos, D.D.C. Bradley, D.M. de Leeuw, P.N. Horton, M.B. Hursthouse, Adv. Mater. 19, 4438 (2007)

    Article  CAS  Google Scholar 

  24. C. Liu, C. Yi, K. Wang, Y. Yang, R.S. Bhatta, M. Tsige, S. Xiao, X. Gong, ACS Appl. Mater. Interfaces 7, 4928 (2015)

    Article  CAS  Google Scholar 

  25. L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, J. Hou, Angew. Chem. Int. Ed. 123, 9871 (2011)

    Article  Google Scholar 

  26. P. Liu, K. Zhang, F. Liu, Y. Jin, S. Liu, T.P. Russell, H.-L. Yip, F. Huang, Y. Cao, Chem. Mater. 26, 3009 (2014)

    Article  Google Scholar 

  27. J. Hou, Z.a. Tan, Y. He, C. Yang, Y. Li, Macromolecules 39, 4657 (2006)

    Article  CAS  Google Scholar 

  28. J. Hou, Z.a. Tan, Y. Yan, Y. He, C. Yang, Y. Li, J. Am. Chem. Soc. 128, 4911 (2006)

    Article  CAS  Google Scholar 

  29. P.P. Boix, G. Garcia-Belmonte, U. Muñecas, M. Neophytou, C. Waldauf, R. Pacios, Appl. Phys. Lett. 95, 233302 (2009)

    Article  Google Scholar 

  30. P.N. Murgatroyd, Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D. Appl. Phys. 3, 151–156 (1970)

    Article  Google Scholar 

  31. R.H. Bube, J. Appl. Phys. 33, 1733 (1962)

    Article  CAS  Google Scholar 

  32. Y. Chen, Y. Zhao, Z. Liang, Energy Environ. Sci. 8, 401 (2015)

    Article  CAS  Google Scholar 

  33. O. Bubnova, X. Crispin, Energy Environ. Sci. 5, 9345 (2012)

    Article  CAS  Google Scholar 

  34. J.L. Ciprelli, C. Clarisse, D. Delabouglise, Synth. Met. 74, 217 (1995)

    Article  CAS  Google Scholar 

  35. M.C. Morvant, J.R. Reynolds, Synth. Met. 92, 57 (1998)

    Article  CAS  Google Scholar 

  36. F. Ye, R.E. Noftle, D.D. DesMarteau, Synth. Met. 60, 141 (1993)

    Article  CAS  Google Scholar 

  37. H. Djellab, M. Armand, D. Delabouglise, Synth. Met. 74, 223 (1995)

    Article  CAS  Google Scholar 

  38. B. Garcia, D. Bélanger, Synth. Met. 98, 135 (1998)

    Article  CAS  Google Scholar 

  39. S.K.M. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.W. Denier van der Gon, W.R. Salaneck, M. Fahlman, Synth. Met. 139, 1 (2003)

    Article  Google Scholar 

  40. G. Zotti, S. Zecchin, G. Schiavon, F. Louwet, L. Groenendaal, X. Crispin, W. Osikowicz, W. Salaneck, M. Fahlman, Macromolecules 36, 3337 (2003)

    Article  CAS  Google Scholar 

  41. G. Greczynski, T. Kugler, W.R. Salaneck, Thin Solid Films 354, 129 (1999)

    Article  CAS  Google Scholar 

  42. G.H. Kim, L. Shao, K. Zhang, K.P. Pipe, Nat. Mater. 12, 719 (2013)

    Article  CAS  Google Scholar 

  43. E. Naudin, H.A. Ho, S. Branchaud, L. Breau, D. Bélanger, J. Phys. Chem. B 106, 10585 (2002)

    Article  CAS  Google Scholar 

  44. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, (Wiley, 2006), pp. 16–27

  45. H. Shimotani, G. Diguet, Y. Iwasa, Appl. Phys. Lett. 86, 022104 (2005)

    Article  Google Scholar 

  46. M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yang, F. Qiu, Energy Environ. Sci. 5, 8351 (2012)

    Article  CAS  Google Scholar 

  47. Y. Xuan, X. Liu, S. Desbief, P. Leclère, M. Fahlman, R. Lazzaroni, M. Berggren, J. Cornil, D. Emin, X. Crispin, Phys. Rev. B 82, 115454 (2010)

    Article  Google Scholar 

  48. W. Domagala, B. Pilawa, M. Lapkowski, Electrochim. Acta 53, 4580 (2008)

    Article  CAS  Google Scholar 

  49. T.D. Jozef, S.A. Alexandre, Rep. Prog. Phys. 72, 066501 (2009)

    Article  Google Scholar 

  50. J. Rivnay, S.C.B. Mannsfeld, C.E. Miller, A. Salleo, M.F. Toney, Chem. Rev. 112, 5488 (2012)

    Article  CAS  Google Scholar 

  51. S. Guo, E.M. Herzig, A. Naumann, G. Tainter, J. Perlich, P. Müller-Buschbaum, J. Phys. Chem. B 118, 344 (2014)

    Article  CAS  Google Scholar 

  52. C.-K. Lv, F. Zheng, X.-Y. Yang, P.-Q. Bi, M.-S. Niu, Y.-Z. Wang, T.A. Smith, K.P. Ghiggino, X.-T. Hao, 122, 2572 (2018)

    Google Scholar 

  53. T. Li, S. Dai, Z. Ke, L. Yang, J. Wang, C. Yan, W. Ma, X. Zhan, Adv. Mater. 30, 1705969 (2018)

    Article  Google Scholar 

  54. A.G. MacDiarmid, Angew. Chem. Int. Ed. 40, 2581 (2001)

    Article  CAS  Google Scholar 

  55. Q. Fan, Q. Zhu, Z. Xu, W. Su, J. Chen, J. Wu, X. Guo, W. Ma, M. Zhang, Y. Li, Nano Energy 48, 413 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors at The University of Akron acknowledge National Science Foundation (EECS 1351785) and Air Force Office of Scientific Research (AFOSR) (through the Organic Materials Chemistry Program, Grant Number: FA9550-15-1-0292, Program Manager, Dr. Kenneth Caster) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Gong.

Electronic supplementary material

ESM 1

(DOCX 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, T., Yi, C., Liu, L. et al. Enhanced thermoelectric properties of two-dimensional conjugated polymers. emergent mater. 1, 67–76 (2018). https://doi.org/10.1007/s42247-018-0002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-018-0002-4

Keywords

Navigation