Skip to main content
Log in

Small-invasive determination of iron content in coating of galvanized steel sheets by laser-induced breakdown spectroscopy

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A new method was presented to determine the iron content in the coating of galvanized steel sheet based on laser-induced breakdown spectroscopy. The zinc–iron coating was characterized with a series of single laser pulses irradiated on the traversing sheet steel, each on a different steel sheet position. The influences of laser fluence and elemental depth distribution were studied and analyzed. To protect the corrosion performance of the coating and meet requirements for small-invasive measurement, the ablation size of the crater under different laser fluences was studied. Under the optimized experimental parameters, the diameter of ablation craters is about 50 μm, and then, the Fe content in the coating was calibrated and analyzed by the linear standard calibration method. The calibration result, however, is not good. Considering that the Zn content in the coating was high and relatively constant, curve calibration was then carried out with the intensity ratio (\(I_{{{\text{Fe}}404.58}} /I_{{{\text{Zn}}468.01}}\)) instead of the net line intensity of Fe, and then, the determination coefficient of calibration curve increases from 0.7713 to 0.9511, and the root-mean-square error decreases from 0.4832% to 0.1509%. The results prove that the laser-induced breakdown spectroscopy is an effective way for the analysis of the Fe content in the coating of galvanized steel sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Zhang, W.H. Leng, H.B. Shao, J.Q. Zhang, J.M. Wang, C.N. Cao, J. Electroanal. Chem. 516 (2001) 127–130.

    Google Scholar 

  2. T. Tsuru, S. Kobayashi, T. Akiyama, H. Fukushima, S.K. Gogia, R. Kammel, J. Appl. Electrochem. 27 (1997) 209–214.

    Google Scholar 

  3. M. Pushpavanam, S.R. Natarajan, K. Balakrishnan, L.R. Sharma, J. Appl. Electrochem. 21 (1991) 642–645.

    Google Scholar 

  4. C. Saenchai, C. Prom-u-thai, S. Jamjod, B. Dell, B. Rerkasem, Plant Soil 361 (2012) 271–278.

    Google Scholar 

  5. M. Kanagasabapathy, S. Jayakrishnan, Russ. J. Electrochem. 47 (2011) 26–33.

    Google Scholar 

  6. N. Kasai, Y. Kaku, S. Okazaki, K. Hirai, J. Mater. Eng. Perform. 25 (2016) 4680–4685.

    Google Scholar 

  7. A. Roshanghias, M.H. Sohi, J. Coat. Technol. Res. 9 (2012) 215–218.

    Google Scholar 

  8. K.O. Nayana, T.V. Venkatesha, K.G. Chandrappa, Surf. Coat. Technol. 235 (2013) 461–468.

    Google Scholar 

  9. Y.L. Xu, D.S. Zhang, J. Ni, Metallurgical Analysis 32 (2012) No. 1, 23–28.

    Google Scholar 

  10. L. Li, Z.G. Fan, Z.Y. Yang, Chemical Analysis and Meterage 17 (2008) No. 1, 8–10.

    Google Scholar 

  11. H. Park, C.S. Lee, X-Ray Spectrom. 37 (2008) 561–564.

    Google Scholar 

  12. K.K. Lee, I.H. Lee, C.R. Lee, H.K. Ahn, Surf. Coat. Technol. 201 (2007) 6261–6266.

    Google Scholar 

  13. M. Safaeirad, M.R. Toroghinejad, F. Ashrafizadeh, J. Mater. Process. Technol. 196 (2008) 205–212.

    Google Scholar 

  14. L. Radziemski, D. Cremers, Spectrochim. Acta Part B 87 (2013) 3–10.

    Google Scholar 

  15. B. Sallé, P. Mauchien, S. Maurice, Spectrochim. Acta Part B 62 (2007) 739–768.

    Google Scholar 

  16. B. Zhang, L.X. Sun, H.B. Yu, Y. Xin, Z.B. Cong, J. Anal. At. Spectrom. 28 (2013) 1884–1893.

    Google Scholar 

  17. M. Boueri, M. Baudelet, J. Yu, X.L. Mao, S.S. Mao, R. Russo, Appl. Surf. Sci. 255 (2009) 9566–9571.

    Google Scholar 

  18. Z. Wang, T.B. Yuan, Z.Y. Hou, W.D. Zhou, J.D. Lu, H.B. Ding, X.Y. Zeng, Front. Phys. 9 (2014) 419–438.

    Google Scholar 

  19. J. Yu, R.E. Zheng, Front. Phys. 7 (2012) 647–648.

    Google Scholar 

  20. D.W. Hahn, N. Omenetto, Appl. Spectrosc. 66 (2012) 347–419.

    Google Scholar 

  21. J. El Haddad, L. Canioni, B. Bousquet, Spectrochim. Acta Part B 101 (2014) 171–182.

    Google Scholar 

  22. L.X. Sun, Y. Xin, Z.B. Cong, Y. Li, L.F. Qi, Adv. Mater. Res. 694–697 (2013) 1260–1266.

    Google Scholar 

  23. R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, C. Gehlen, Spectrochim. Acta Part B. 93 (2014) 41–51.

    Google Scholar 

  24. J.M. Li, L.B. Guo, N. Zhao, X.Y. Yang, R.X. Yi, K.H. Li, Q.D. Zeng, X.Y. Lin, X.Y. Zeng, Y.F. Lu, Talanta 151 (2016) 234–238.

    Google Scholar 

  25. S.C. Yao, J.D. Lu, K. Chen, S.H. Pan, J.Y. Li, M.R. Dong, Appl. Surf. Sci. 257 (2011) 3103–3110.

    Google Scholar 

  26. S.M. Angel, J. Bonvallet, M. Lawrence-Snyder, W.F. Pearman, J. Register, J. Anal. At. Spectrom. 31 (2016) 328–336.

    Google Scholar 

  27. H. Balzer, M. Hoehne, V. Sturm, R. Noll, Spectrochim. Acta Part B 60 (2005) 1172–1178.

    Google Scholar 

  28. K. Novotny, T. Vaculovic, M. Galiova, V. Otruba, V. Kanicky, J. Kaiser, M. Liska, O. Samek, R. Malina, K. Palenıkova, Appl. Surf. Sci. 253 (2007) 3834–3842.

    Google Scholar 

  29. G. Asimellis, A. Giannoudakos, M. Kompitsas, Appl. Opt. 46 (2007) 935–942.

    Google Scholar 

  30. P. Pouli, K. Melessanaki, A. Giakoumaki, V. Argyropoulos, D. Anglos, Spectrochim. Acta Part B 60 (2005) 1163–1171.

    Google Scholar 

  31. G.S. Maurya, R. Kumar, A. Kumar, A.K. Rai, Spectrochim. Acta Part B 126 (2016) 17–22.

    Google Scholar 

  32. T. Canel, P. Demir, E. Kacar, B. Genc Oztoprak, E. Akman, M. Gunes, A. Demir, Opt. Laser Technol. 54 (2013) 257–264.

    Google Scholar 

  33. E.M. Bellhouse, J.R. McDermid, Mater. Sci. Eng. A 491 (2008) 39–46.

    Google Scholar 

  34. H. Balzer, M. Hoehne, R. Noll, V. Sturm, Anal. Bioanal. Chem. 385 (2006) 225–233.

    Google Scholar 

  35. J.M. Vadillo, J.J. Laserna, Spectrochim. Acta Part B 59 (2004) 147–161.

    Google Scholar 

  36. K.A. Tereszchuk, J.M. Vadillo, J.J. Laserna, Spectrochim. Acta Part B 64 (2009) 378–383.

    Google Scholar 

  37. L. St-Onge, M. Sabsabi, Spectrochim. Acta Part B 55 (2000) 299–308.

    Google Scholar 

  38. C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J.L. Lacour, C. Geertsen, J. Anal. At. Spectrom. 12 (1997) 183–188.

    Google Scholar 

  39. W. T. Y. Mohamed, Opt. Laser Technol. 40 (2008) 30–38.

    Google Scholar 

  40. U. Panne, R. E. Neuhauser, C. Haisch, H. Fink, R. Niessner, Appl. Spectrosc. 56 (2002) 375–380.

    Google Scholar 

  41. T. Ctvrtnickova, L. Cabalin, J. Laserna, V. Kanicky, G. Nicolas, Appl. Surf. Sci. 255 (2009) 5329–5333.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFF0106202), the National Natural Science Foundation of China (No. 61473279), Shenyang Science and Technology Project (No. Z17-7-006), the Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-JSC037) and the Youth Innovation Promotion Association, CAS (No. 2014179). The authors would like to thank Shanghai Baosteel Industrial Technology Service Co., Ltd., for providing galvanized steel sheets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan-xiang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Lx., Wang, Wy., Guo, Mt. et al. Small-invasive determination of iron content in coating of galvanized steel sheets by laser-induced breakdown spectroscopy. J. Iron Steel Res. Int. 26, 1137–1146 (2019). https://doi.org/10.1007/s42243-019-00320-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00320-z

Keywords

Navigation