Advertisement

Journal of the Australian Ceramic Society

, Volume 53, Issue 2, pp 657–665 | Cite as

Highly porous SiC ceramics from particle-stabilized suspension

  • Woo Young Jang
  • Jung Gyu Park
  • Bijay Basnet
  • Kim Tae Woo
  • In Sub Han
  • Ik Jin KimEmail author
Research

Abstract

This study reports on the wet-foam stability of porous ceramics that are formed from a particle-stabilized colloidal suspension for which the direct-foaming method is used. To stabilize the wet foam, an initial colloidal suspension of silicon carbide (SiC) was partially hydrophobized by the surfactant octylamine (12.5 wt.%). The influence of the binder content on the wet-foam stability in terms of the air content, bubble size, contact angle, surface tension, surface-free energy, Laplace pressure, and relative bubble size is described in this paper. The results show a wet-foam stability of more than 95% that corresponds to an air content of 87.8%, an increase of the adsorption free energy from 3.0 × 10−5 to nearly 7.5 × 10−5 J, a Laplace pressure increase from 0.16 to 0.20 mPa, and a relative bubble size of 1.3 for the colloidal particles with a 20 wt% binder content. The uniform distribution of the highly open/interconnected pores could be controlled with thick struts and an increasing of the binder content up to 20 wt%, leading to the achievement of a higher-stability wet foam with respect to the porous ceramic.

Keywords

SiC Porous ceramics Direct foaming Wet-foam stability Colloidal suspension 

Notes

Acknowledgements

This research was financially supported by Hanseo University, and it was conducted under the framework of the research and development program of the Korea Institute of Energy Research (B6-2455).

References

  1. 1.
    Yamada, K., and Mohri, M.: Properties and applications of silicon carbide ceramics. Silicon Carbide Ceramics—1 Ch 2, pp 13–44 (1991)Google Scholar
  2. 2.
    Zum Gahr, K.H., Blattner, R., Hwang, D.H., Pohlmann, K.: Micro- and macro-tribological properties of SiC ceramics in sliding contact. Wear. 250(1–12), 299–310 (2001)CrossRefGoogle Scholar
  3. 3.
    Eom, J.H., Kim, Y.W., Song, I.H., Kim, H.D.: Processing and properties of polysiloxane-derived porous silicon carbide. J. Eur. Cer. Soc. 28, 1029–1035 (2008)CrossRefGoogle Scholar
  4. 4.
    Fukushima, M., Colombo, P.: Processing of polysiloxane-derived porous ceramics: a review. Sci Technol Adv Mater. 11, 044303 (2010) (16pp) CrossRefGoogle Scholar
  5. 5.
    Scheffler, M., Colombo, P.: Cellular ceramics: structure, manufacturing, properties and applications, p. 645. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim (2005)CrossRefGoogle Scholar
  6. 6.
    Eom, J.H., Kim, Y.K., Raju, S.: Processing and properties of macroporous silicon carbide ceramics: a review. Jor Asian Cer Soc. 1(3), 220–242 (2013)CrossRefGoogle Scholar
  7. 7.
    Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J.: Processing routes to Macroporous ceramics: a review. J Am Ceram Soc. 89(6), 1771–1789 (2006)CrossRefGoogle Scholar
  8. 8.
    Wong, J.C.H., Tervoort, E., Busato, S., Gonzenbach, U.T., Studart, A.R., Ermanni, P., Gauckler, L.J.: Designing macroporous polymers from particle-stabilized foams. J Mater Chem. 20, 5628–5640 (2010)CrossRefGoogle Scholar
  9. 9.
    Lee, J.S., Lee, S.H., Choi, S.C.: Improvement of porous silicon carbide filters by growth of silicon carbide nanowires using modified carbothermal reduction process. J Alloys and Comp. 467, 543–549 (2009)CrossRefGoogle Scholar
  10. 10.
    Mouazer, R., Mullens, S., Thijs, I., Luyten, J., Buekenhoudt, A.: Silicon carbide foams by polyurethane replica technique. Adv Eng Matr. 7(12), 1124–1128 (2005)CrossRefGoogle Scholar
  11. 11.
    Li, F., Kanga, Z., Huanga, X., Wang, X.G., Zhang, G.J.: Preparation of zirconium carbide foam by direct foaming method. J Eur Cer Soc. 34, 3513–3520 (2014)CrossRefGoogle Scholar
  12. 12.
    Bhaskar, S., Park, J.G., Kim, S.W., Kim, H.T., Kim, I.J.: Micro porous ceramics using partially hydrophobized SiO2–SiC particle by direct foaming. J Cer Soc Jp. 123(6), 1–5 (2015)Google Scholar
  13. 13.
    Zhang, L.Y., Zhou, D.-l., Chen, Y., Liang, B., Zhou, J.B.: Preparation of high open porosity ceramic foams via direct foaming molded and dried at room temperature. Journal of the J Eur Cer Soc. 34, 2443–2452 (2014)CrossRefGoogle Scholar
  14. 14.
    Pokhrel, A., Nam, S.D., Lee, S.T., Kim, I.J.: Processing of porous ceramics by direct foaming: a review. J Kr Ceram Soc. 50(2), 93–102 (2013)CrossRefGoogle Scholar
  15. 15.
    Murray, B.S.: Stabilization of bubbles and foams. Curr. Opin. Colloid Interface Sc. 12, 231–241 (2007)Google Scholar
  16. 16.
    Horozov, T.S.: Foams and foam films stabilized by solid particles. Curr Opin Colloid Interface Sc. 13, 134–140 (2008)CrossRefGoogle Scholar
  17. 17.
    Zibouche, F., Kerdjoudj, H.: Rheological properties of the Tamazert kaolin. Eur J Sci Res. 13, 22–30 (2006)Google Scholar
  18. 18.
    Sarkar, N., Park, J.G., Mazumder, S., Seo, D.N., Kim, I.J.: Effect of Amphiphile chain length on wet foam stability of porous ceramics. Cer Intr. 41, 4021–4027 (2015)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2017

Authors and Affiliations

  1. 1.Department of Advanced Materials Science and Engineering, Institute of Processing and Application of Inorganic Materials, (PAIM)Hanseo UniversitySeosan-siSouth Korea
  2. 2.Korea Institute of Energy Research (KIER)DaejeonSouth Korea

Personalised recommendations