Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies

  • Carlos de CastroEmail author
  • Iñigo Capellán-Pérez
Review Paper


Analyses proposing a high share of concentrated solar power (CSP) in future 100% renewable energy scenarios rely on the ability of this technology, through storage and/or hybridization, to partially avoid the problems associated with the hourly/daily (short-term) variability of other variable renewable sources such as wind or solar photovoltaic. However, data used in the scientific literature are mainly theoretical values. In this work, the actual performance of CSP plants in operation from publicly available data from four countries (Spain, the USA, India, and United Arab Emirates) has been estimated for three dimensions: capacity factor (CF), seasonal variability, and energy return on energy invested (EROI). In fact, the results obtained show that the actual performance of CSP plants is significantly worse than that projected by constructors and considered by the scientific literature in the theoretical studies: a CF in the range of 0.15–0.3, low standard EROI (1.3:1–2.4:1), intensive use of materials—some scarce, and significant seasonal intermittence. In the light of the obtained results, the potential contribution of current CSP technologies in a future 100% renewable energy system seems very limited.



This work has been partially developed under the MEDEAS Project, funded by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 691287. Iñigo Capellán-Pérez also acknowledges financial support from the Juan de la Cierva Research Fellowship of the Ministry of Economy and Competitiveness of Spain (No. FJCI-2016-28833).

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is not conflict of interest.


  1. Alobaidli A, Sanz B, Behnke K, Witt T, Viereck D, Schwarz MA (2017) SHAMS 1—design and operational experiences of the 100 MW–540 °C CSP Plant in Abu Dhabi. AIP Conf Proc 1850:020001. CrossRefGoogle Scholar
  2. Arvesen A, Hertwich EG (2012) Assessing the life cycle environmental impacts of wind power: a review of present knowledge and research needs. Renew Sustain Energy Rev 16:5994–6006. CrossRefGoogle Scholar
  3. Asdrubali F, Baldinelli G, D’Alessandro F, Scrucca F (2015) Life cycle assessment of electricity production from renewable energies: review and results harmonization. Renew Sustain Energy Rev 42:1113–1122. CrossRefGoogle Scholar
  4. Boccard N (2009) Capacity factor of wind power realized values vs. estimates. Energy Policy 37:2679–2688. CrossRefGoogle Scholar
  5. BP (2017) BP statistical review of world energy June 2017, statistical review of world energy. British Petroleum, LondonGoogle Scholar
  6. Brand B, Stambouli AB, Zejli D (2012) The value of dispatchability of CSP plants in the electricity systems of Morocco and Algeria. Energy Policy 47:321–331CrossRefGoogle Scholar
  7. Burkhardt JJ, Heath GA, Turchi CS (2011) Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environ Sci Technol 45:2457–2464. CrossRefGoogle Scholar
  8. Capellán-Pérez I, Mediavilla M, de Castro C, Carpintero Ó, Miguel LJ (2014) Fossil fuel depletion and socio-economic scenarios: an integrated approach. Energy 77:641–666. CrossRefGoogle Scholar
  9. Capellán-Pérez I, de Blas I, Nieto J, De Castro C, Miguel LJ, Mediavilla M, Carpintero Ó, Rodrigo P, Frechoso F, Cáceres S (2017a) MEDEAS Model and IOA implementation at global geographical level (Deliverable MEDEAS Project, No. D4.1). GEEDS, University of Valladolid, Valladolid
  10. Capellán-Pérez I, de Castro C, Arto I (2017b) Assessing vulnerabilities and limits in the transition to renewable energies: land requirements under 100% solar energy scenarios. Renew Sustain Energy Rev 77:760–782. CrossRefGoogle Scholar
  11. Clack CTM, Qvist SA, Apt J, Bazilian M, Brandt AR, Caldeira K, Davis SJ, Diakov V, Handschy MA, Hines PDH, Jaramillo P, Kammen DM, Long JCS, Morgan MG, Reed A, Sivaram V, Sweeney J, Tynan GR, Victor DG, Weyant JP, Whitacre JF (2017) Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proc Natl Acad Sci USA 114:6722–6727. CrossRefGoogle Scholar
  12. CNMC (2016) Resolución por la que se aprueba la liquidación definitiva de las primas equivalentes, las primas, incentivos y complementos a las instalaciones de producción de energía eléctrica de tecnología solar termoeléctrica correspondiente a los ejercicios 2009, 2010 Y 2011 (No. LIQ/DE/ 143 /1 5). Comisión Nacional de los Mercados y la CompetenciaGoogle Scholar
  13. Corona B, Miguel GS, Cerrajero E (2014) Life cycle assessment of concentrated solar power (CSP) and the influence of hybridising with natural gas. Int J Life Cycle Assess 19:1264–1275. CrossRefGoogle Scholar
  14. Corona B, Ruiz D, San Miguel G (2016) Life cycle assessment of a HYSOL concentrated solar power plant: analyzing the effect of geographic location. Energies 9:413. CrossRefGoogle Scholar
  15. Day JW, D’Elia CF, Wiegman ARH, Rutherford JS, Hall CAS, Lane RR, Dismukes DE (2018) The energy pillars of society: perverse interactions of human resource use, the economy, and environmental degradation. Biophys Econ Resour Qual 3:2. CrossRefGoogle Scholar
  16. de Castro C, Mediavilla M, Miguel LJ, Frechoso F (2013) Global solar electric potential: a review of their technical and sustainable limits. Renew Sustain Energy Rev 28:824–835. CrossRefGoogle Scholar
  17. de Castro C, Carpintero Ó, Frechoso F, Mediavilla M, de Miguel LJ (2014) A top-down approach to assess physical and ecological limits of biofuels. Energy 64:506–512. CrossRefGoogle Scholar
  18. Delucchi MA, Jacobson MZ (2011) Providing all global energy with wind, water, and solar power, Part II: reliability, system and transmission costs, and policies. Energy Policy 39:1170–1190. CrossRefGoogle Scholar
  19. Deng YY, Haigh M, Pouwels W, Ramaekers L, Brandsma R, Schimschar S, Grözinger J, de Jager D (2015) Quantifying a realistic, worldwide wind and solar electricity supply. Glob Environ Change 31:239–252. CrossRefGoogle Scholar
  20. Denholm P, Mehos M (2015) The role of concentrating solar power in integrating solar and wind energy. 4th Solar Integration WorkshopGoogle Scholar
  21. Douglas K, Boyd J, Byron J, Eggert A, Weisenmiller R, Vaccaro K (2010) Abengoa Mojave Solar Project. Commission Decision. (No. CEC-800-2010-008-CMF. Docket Number 09-AFC-5). California Energy CommissionGoogle Scholar
  22. Ehtiwesh IAS, Coelho MC, Sousa ACM (2016) Exergetic and environmental life cycle assessment analysis of concentrated solar power plants. Renew Sustain Energy Rev 56:145–155. CrossRefGoogle Scholar
  23. Elliston B, Diesendorf M, MacGill I (2012) Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market. Energy Policy 45:606–613. CrossRefGoogle Scholar
  24. Ferroni F, Hopkirk RJ (2016) Energy return on energy invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation. Energy Policy 94:336–344. CrossRefGoogle Scholar
  25. Ferroni F, Guekos A, Hopkirk RJ (2017) Further considerations to: Energy return on energy invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation. Energy Policy 107:498–505. CrossRefGoogle Scholar
  26. García-Olivares A (2016) Energy for a sustainable post-carbon society. Sci Mar 80:257–268. CrossRefGoogle Scholar
  27. García-Olivares A, Ballabrera-Poy J, García-Ladona E, Turiel A (2012) A global renewable mix with proven technologies and common materials. Energy Policy 41:561–574. CrossRefGoogle Scholar
  28. Greenpeace GWEC, SolarPowerEurope (2015) Energy [R] evolution-A sustainable world energy outlook 2015. GWEC, SolarPowerEurope, GreenpeaceGoogle Scholar
  29. Hall CAS, Klitgaard KA (2012) Energy and the wealth of nations: understanding the biophysical economy. Springer, New YorkCrossRefGoogle Scholar
  30. Hall CAS, Lambert JG, Balogh SB (2014) EROI of different fuels and the implications for society. Energy Policy 64:141–152. CrossRefGoogle Scholar
  31. Hammond GP, Jones CI (2008) Embodied energy and carbon in construction materials. Proc Inst Civil Eng Energy 161:87–98Google Scholar
  32. Heath G, Turchi C, Decker T, Burkhardt J, Kutscher C (2009) Life cycle assessment of thermal energy storage: two-tank indirect and thermocline. In: ASME 2009 3rd international conference on energy sustainability collocated with the heat transfer and InterPACK09 conferences. American Society of Mechanical Engineers, pp 689–690Google Scholar
  33. Heath GA, Turchi CS, Burkhardt JJ III (2011) Life cycle assessment of a parabolic trough concentrating solar power plant and impacts of key design alternatives. In: SolarPACES conference, Granada, Spain. NREL, Golden.
  34. Hernandez RR, Hoffacker MK, Murphy-Mariscal ML, Wu GC, Allen MF (2015) Solar energy development impacts on land cover change and protected areas. Proc Natl Acad Sci USA. Google Scholar
  35. Heun MK, de Wit M (2012) Energy return on (energy) invested (EROI), oil prices, and energy transitions. Energy Policy 40:147–158. CrossRefGoogle Scholar
  36. IEA (2018) IEA world energy statistics and balances, world energy statistics and balances (database). IEA/OECD, ParisGoogle Scholar
  37. IEA and IRENA (2013) Concentrating solar power. IEA-ETSAP and IRENA technology brief E10 (Technology Brief No. 10). IEA ETSAP and IRENAGoogle Scholar
  38. IEA and IRENA (2017) Perspectives for the energy transition. Investment needs for a low-carbon energy system. International Energy Agency and International Renewable Energy AgencyGoogle Scholar
  39. IPCC (2011) Special report on renewable energy sources and climate change mitigation. Cambridge University Press, New YorkGoogle Scholar
  40. IPCC (2014) Climate change 2014: mitigation of climate change. Fifth Assess. Rep. Intergov. Panel Clim. ChangeGoogle Scholar
  41. IRENA (2018) Renewable power generation costs in 2017. International Renewable Energy Agency, Abu DhabiGoogle Scholar
  42. IRENA db (2017) IRENA resource (database). International Renewable Energy Agency.
  43. Jacobson MZ, Delucchi MA (2011) Providing all global energy with wind, water, and solar power, part I: technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39:1154–1169. CrossRefGoogle Scholar
  44. Jacobson et al (2016) 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for 139 countries of the world, Joule 1:108–121Google Scholar
  45. Johansson B (2013) Security aspects of future renewable energy systems—a short overview. Energy 61:598–605. CrossRefGoogle Scholar
  46. Keough (2011) Austempered ductile iron (ADI)—a green alternative. American Foundry Society, Schaumburg.
  47. Klein SJW, Rubin ES (2013) Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems. Energy Policy 63:935–950. CrossRefGoogle Scholar
  48. Krishnamurthy P, Banerjee R (2012) Energy analysis of solar thermal concentrating systems for power plants. In: International conference on future electrical power and energy systems, lecture notes in information technology, pp 509–514Google Scholar
  49. Kuenlin A, Augsburger G, Gerber L, Maréchal F (2013) Life cycle assessment and environomic optimization of concentrating solar thermal power plants. In: Presented at the 26th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems (ECOS2013)Google Scholar
  50. La Africana (2018) Africana energia. Accessed 15 Jan 2018
  51. Lambert JG, Hall CAS, Balogh S, Gupta A, Arnold M (2014) Energy, EROI and quality of life. Energy Policy 64:153–167. CrossRefGoogle Scholar
  52. Lechón Y, de la Rúa C, Sáez R (2008) Life cycle environmental impacts of electricity production by solarthermal power plants in Spain. J Sol Energy Eng 130:021012. CrossRefGoogle Scholar
  53. Lenzen M, McBain B, Trainer T, Jütte S, Rey-Lescure O, Huang J (2016) Simulating low-carbon electricity supply for Australia. Appl Energy 179:553–564. CrossRefGoogle Scholar
  54. Lilliestam J, Labordena M, Patt A, Pfenninger S (2017) Empirically observed learning rates for concentrating solar power and their responses to regime change. Nat Energy 2:17094. CrossRefGoogle Scholar
  55. MacKay DJC (2013) Solar energy in the context of energy use, energy transportation and energy storage. Philos Trans R Soc Lond A 371:20110431. CrossRefGoogle Scholar
  56. Ministerio de Energía (2018) Estadísticas eléctricas anuales: eléctricas 2016–2018. Generación eléctrica 2016 [ODS]Google Scholar
  57. Ministerio de Industria, Energía y Turismo (2014) Orden IET/1882/2014, de 14 de octubre, por la que se establece la metodología para el cálculo de la energía eléctrica imputable a la utilización de combustibles en las instalaciones solares termoeléctricas (No. BOE-A-2014-10475), BOE. Ministerio de Industria, Energía y TurismoGoogle Scholar
  58. Montgomery Z (2009) Environmental impact study: CSP vs. CdTe thin film photovoltaics. Masters Proj. Submitt. Partial Fulfillment Requir. Master Environ. Manag. Degree Nicholas Sch. Environ. Duke UnivGoogle Scholar
  59. Moriarty P, Honnery D (2016) Can renewable energy power the future? Energy Policy 93:3–7. CrossRefGoogle Scholar
  60. NASA EO (2010) Massive dust storm sweeps across Africa. NASA Earth Observatory.
  61. NREL (2012) Renewable electricity futures study (entire report) (4 vols. No. NREL/TP-6A20-52409). National Renewable Energy Laboratory, GoldenGoogle Scholar
  62. NREL (2017) Concentrating solar power projects. National Renewable Energy Laboratory. Accessed 6 Jan 2017
  63. Palmer G (2013) Household solar photovoltaics: supplier of marginal abatement, or primary source of low-emission power? Sustainability 5:1406–1442. CrossRefGoogle Scholar
  64. Palmer G (2017) A framework for incorporating EROI into electrical storage. Biophys Econ Resour Qual 2:6. CrossRefGoogle Scholar
  65. Pihl E, Kushnir D, Sandén B, Johnsson F (2012) Material constraints for concentrating solar thermal power. In: Energy, integration and energy system engineering, European symposium on computer-aided process engineering 2011, vol 44, pp 944–954.
  66. Pillai U (2015) Drivers of cost reduction in solar photovoltaics. Energy Econ 50:286–293. CrossRefGoogle Scholar
  67. Prieto PA, Hall CAS (2013) Spain’s photovoltaic revolution: the energy return on investment, 2013th edn. Springer, New YorkCrossRefGoogle Scholar
  68. Radan (2016) 20,000 UAE homes powered by solar energy in 2015. Retrieved 15 Jan 2018
  69. Raugei M, Carbajales-Dale M, Barnhart CJ, Fthenakis V (2015) Rebuttal: “comments on ‘energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants’—making clear of quite some confusion. Energy 82:1088–1091. CrossRefGoogle Scholar
  70. Raugei M, Sgouridis S, Murphy D, Fthenakis V, Frischknecht R, Breyer C, Bardi U, Barnhart C, Buckley A, Carbajales-Dale M, Csala D, de Wild-Scholten M, Heath G, Jæger-Waldau A, Jones C, Keller A, Leccisi E, Mancarella P, Pearsall N, Siegel A, Sinke W, Stolz P (2017) Energy return on energy invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: a comprehensive response. Energy Policy 102:377–384. CrossRefGoogle Scholar
  71. REE (2018) REE webpage. Red Eléctrica de España. Accessed 15 Jan 2018
  72. ReflecTech (2012) Embodied energy. RefkecTech White PaperGoogle Scholar
  73. REN21 (2015) Renewables 2015. Global status report. REN 21, ParisGoogle Scholar
  74. REN21 (2016) Renewables 2016. Global status report. REN 21, ParisGoogle Scholar
  75. REN21 (2017) Renewables Global futures report. Great debates towards 100% renewable energy. REN21 Secretariat, ParisGoogle Scholar
  76. Sanz B (2017) How SHAMS 1 CSP project produce more electricity beyond expectation? Here the benificial O&M experienceGoogle Scholar
  77. Smil V (2010) Energy transitions: history, requirements, prospects. Praeger, Santa BarbaraGoogle Scholar
  78. Solanki J (2016) Godawari CSP plant: an overview of performance. Sun Focus 4:6–8Google Scholar
  79. Trainer T (2010) Can renewables, etc., solve the greenhouse problem? The negative case. Energy Policy 38:4107–4114. CrossRefGoogle Scholar
  80. Trainer T (2012) A critique of Jacobson and Delucchi’s proposals for a world renewable energy supply. Energy Policy 44:476–481. CrossRefGoogle Scholar
  81. Trainer T (2013) Can Europe run on renewable energy? A negative case. Energy Policy 63:845–850. CrossRefGoogle Scholar
  82. Trainer T (2017a) Some problems in storing renewable energy. Energy Policy 110:386–393. CrossRefGoogle Scholar
  83. Trainer T (2017b) Can renewables meet total Australian energy demand: a “disaggregated” approach. Energy Policy 109:539–544. CrossRefGoogle Scholar
  84. Trieb F (2006) Trans-mediterranean interconnection for concentrating solar power. German Aerospace Center (DLR), Institute of Technical Thermodynamics and Section Systems Analysis and Technology Assessment, StuttgartGoogle Scholar
  85. Turchi C (2010) Parabolic trough reference plant for cost modeling with the solar advisor model (SAM). Technical Report No. NREL/TP-550-47605. NRELGoogle Scholar
  86. US EIA db (2018) USA energy statistics (database). US Energy Information Administration.
  87. Vargel C (2004) Corrosion of aluminium. Elsevier, AmsterdamGoogle Scholar
  88. Viebahn P (2013) Solarthermische kraftwerkstechnologie für den schutz des erdklimas. SOKRATES-Projekt, StuttgartGoogle Scholar
  89. Viebahn P, Lechón Y, Trieb F (2011) The potential role of concentrated solar power (CSP) in Africa and Europe—a dynamic assessment of technology development, cost development and life cycle inventories until 2050. Energy Policy 39:4420–4430. CrossRefGoogle Scholar
  90. Wagner F (2014) Considerations for an EU-wide use of renewable energies for electricity generation. Eur Phys J Plus 129:1–14. CrossRefGoogle Scholar
  91. Weinrebe G, Boehnke M, Trieb F (1998) Life cycle assessment of an 80 MW SEGS plant and a 30 MW Phoebus power tower. Sol Eng 417–424Google Scholar
  92. Weißbach D, Ruprecht G, Huke A, Czerski K, Gottlieb S, Hussein A (2013) Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 52:210–221. CrossRefGoogle Scholar
  93. Weißbach D, Ruprecht G, Huke A, Czerski K, Gottlieb S, Hussein A (2014) Reply on “Comments on ‘energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants’—making clear of quite some confusion.” Energy 68:1004–1006. CrossRefGoogle Scholar
  94. WEO (2014) World energy outlook 2014. OECD/IEA, ParisGoogle Scholar
  95. WWF (2011) The energy report: 100% renewable energy by 2050. WWF, Ecofys, OMA, GlandGoogle Scholar
  96. Zhang HL, Baeyens J, Degrève J, Cacères G (2013) Concentrated solar power plants: review and design methodology. Renew Sustain Energy Rev 22:466–481. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Applied Physics Department, Escuela de ArquitecturaUniversity of ValladolidValladolidSpain
  2. 2.Research Group on Energy, Economy and System DynamicsUniversity of ValladolidValladolidSpain

Personalised recommendations