Skip to main content
Log in

How to Design Donor–Acceptor Based Heterocyclic Conjugated Polymers for Applications from Organic Electronics to Sensors

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Over the past few years, significant progress has been made in the design of organic semi-conducting conjugated polymers that readily transport holes or electrons and can result in light emission. The conjugated backbone consist mainly of electron-donating (donor) and electron-withdrawing (acceptor) units as alternating groups in a conjugated oligomer or polymer that can be regulated by physical properties such as π conjugation length, monomer alteration, inter/intramolecular interactions and energy levels. Certainly, it is notable today that the highest occupied molecular orbital level of the producing material is localized predominantly on the electron-donating moiety and lowest unoccupied molecular orbital level on the electron-accepting moiety. Conjugated oligomers or polymers are used in many detecting fields due to their exceptional ability to sense toxic chemicals, metal ions and biomolecules. The conjugated polymers have unique delocalized π-electronic “molecular wires” that can expand the fluorescence intensity considerably. The fluorescence intensity of polymers can be quenched by particular quenching molecules. In this review, the fluorescence intensity, detecting of multiple metal ions, solubility, photochemical stability and optoelectronic properties of these conjugated polymers, and how they can be regulated by different functional groups, are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Kushida S, Braam D, Dao TD, Saito H, Shibasaki K, Ishii S, Nagao Y, Cui A, Kuwabara J, Kanbara T, Kijima M, Lorke A, Yamamoto Y (2016) Conjugated polymer blend microsphere for efficient, long range light energy transfer. ACS Nano 10:5543–5549

    CAS  PubMed  Google Scholar 

  2. Naarmann H (2000) Polymers electrically conducting, ullmann’s encyclopedia of industrial chemistry

  3. Akamatu H, Inokuchi H, Matsunaga Y (1954) Electrical conductivity of the perylene–bromine complex. Nature 173(4395):168–169

    Google Scholar 

  4. Ferraris J, Cowan DO, Walatka VT, Perlstein JH (1973) Electron transfer in a new highly conducting donor-acceptor complex. J Am Chem Soc 95(3):948–949

    CAS  Google Scholar 

  5. Bolto BA, McNeill R, Weiss DE (1963) Electronic conduction in polymers. III. Electronic properties of polypyrrole. Aust J Chem 16(6):1090–1103

    CAS  Google Scholar 

  6. De Surville R, Jozefowicz M, Yu LT, Pepichon J, Buvet R (1968) Electrochemical chains using protolytic organic semiconductors. Electrochim Acta 13(6):1451–1458

    Google Scholar 

  7. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 37:578–580

    Google Scholar 

  8. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347(6293):539–541

    CAS  Google Scholar 

  9. Friend RH, Gymer RW, Holmes AB, Burroughes JH (1999) Electroluminescence in conjugated polymers. Nature 397(6715):121

    CAS  Google Scholar 

  10. Holdcroft S (2001) Patterning pi-conjugated polymers. Adv Mater 13(23):1753–1765

    CAS  Google Scholar 

  11. Gierschner J, Cornil J, Egelhaaf HJ (2007) Optical bandgaps of π-conjugated organic materials at the polymer limit: experiment and theory. Adv Mater 19(2):173–191

    CAS  Google Scholar 

  12. Leger JM (2008) Organic electronics: the ions have it. Adv Mater 20(4):837–841

    CAS  Google Scholar 

  13. Hameed S, Predeep P, Baiju MR (2010) Polymer light emitting diodes-a review on materials and techniques. Rev Adv Mater Sci 26:30–42

    CAS  Google Scholar 

  14. Sonar P, Williams EL, Singh SP, Dodabalapur A (2011) Thiophene–benzothiadiazole–thiophene (D–A–D) based polymers: effect of donor/acceptor moieties adjacent to D-A–D segment on photophysical and photovoltaic properties. J Mater Chem 21(28):10532–10541

    CAS  Google Scholar 

  15. Akpinar HZ, Udum YA, Toppare L (2015) Multichromic and soluble conjugated polymers containing thiazolothiazole unit for electrochromic applications. Eur Polym J 63:255–261

    CAS  Google Scholar 

  16. Fukuda K, Maki I, Ikeda S, Ito S (1993) Microtextures formed by the remelting reaction in belite crystals. J Am Ceram Soc 76:2942–2944

    CAS  Google Scholar 

  17. Wnek EG, Chien JCW, Karasz FE, Lillya CP (1979) Electrically conducting derivatives of poly(p-phenylene vinylene). Polymer 20:1441–1443

    CAS  Google Scholar 

  18. Kanazawa KK, Diaz AF, Geiss RH, Gill WD, Kwak JF, Logan JA, Rabolt JF, Street B (1979) Organic metals’polypyrrole a stable synthetic metallic polymer. Chem Commun 12:854–855

    Google Scholar 

  19. Diaz AF, Logan JA (1980) Electroactive polyaniline films. J Electroanal Chem Interfacial Electrochem 111(1):111–114

    CAS  Google Scholar 

  20. Waltman RJ, Bargon J, Diaz AF (1983) Electrochemical studies of some conducting polythiophene films. J Phys Chem 87:1459–1463

    CAS  Google Scholar 

  21. Heeger AJ (2001) Nobel lecture: semiconducting and metallic polymers: The fourth generation of polymeric materials. Rev Mod Phys 73(3):681–700

    CAS  Google Scholar 

  22. Yamamoto T, Senechika K, Yamamoto A (1980) Preparation of thermostable and electric-conducting poly (2,5-thienylene). J Polym Sci 18:9–12

    CAS  Google Scholar 

  23. Champion RD, Cheng KF, Pai CL, Chen WC, Jenekhe SA (2005) Electronic properties and field-effect transistors of thiophene-based donor–acceptor conjugated copolymers. Macromol Rapid Commun 26(23):1835–1840

    CAS  Google Scholar 

  24. Chen B, Wu Y, Wang M, Wang S, Sheng S, Zhu W, Tian H (2004) Novel fluorene-alt-thienylenevinylene-based copolymers: tuning luminescent wavelength via thiophene substitution position. Eur Polymer J 40(6):1183–1191

    CAS  Google Scholar 

  25. Do TT, Ha YE, Kim JH (2013) Effect of the number of thiophene rings in polymers with 2,1,3-benzooxadiazole core on the photovoltaic properties. Org Electron 14(10):2673–2681

    CAS  Google Scholar 

  26. Muhalbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C (2006) High photovoltaic performance of a low-bandgap polymer. Adv Mater 18(21):2884–2889

    Google Scholar 

  27. Sonar P, Singh SP, Leclere P, Surin M, Lazzaroni R, Lin TT, Sellinger A (2009) Synthesis, characterization and comparative study of thiophene–benzothiadiazole based donor–acceptor–donor (D–A–D) materials. J Mater Chem 19(20):3228–3237

    CAS  Google Scholar 

  28. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347(6293):539–541

    CAS  Google Scholar 

  29. Masse MA, Martin DC, Thomas E, Karasz FE, Petermann JH (1990) Crystal morphology in pristine and doped films of poly(p-phenylene vinylene). J Mater Sci 25(1):311–320

    CAS  Google Scholar 

  30. Alam MM, Jenekhe SA (2002) Polybenzobisazoles are efficient electron transport materials for improving the performance and stability of polymer light-emitting diodes. Chem Mater 14(11):4775–4780

    CAS  Google Scholar 

  31. Hou J, Yang C, Qiao J, Li Y (2005) Synthesis and photovoltaic properties of the copolymers of 2-methoxy-5-(2′-ethylhexyloxy)-1, 4-phenylene vinylene and 2, 5-thienylene-vinylene. Synth Met 150(3):297–304

    CAS  Google Scholar 

  32. Sanchez CO, Sobarzo P, Gatica N (2015) Electronic and structural properties of polymers based on phenylene vinylene and thiophene units. Control of the gap by gradual increases of thiophene moieties. New J Chem 39(10):7979–7987

    CAS  Google Scholar 

  33. Wong WY, Wang XZ, He Z, Chan KK, Djurišić AB, Cheung KY, Chan WK (2007) Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly (aryleneethynylene) s. J Am Chem Soc 129(46):14372–14380

    CAS  PubMed  Google Scholar 

  34. Zhang M, Fan H, Guo X, He Y, Zhang Z, Min J, Zhang J, Zhao G, Zhan X, Li Y (2010) Synthesis and photovoltaic properties of bithiazole-based donor-acceptor copolymers. Macromolecules 43(13):5706–5712

    CAS  Google Scholar 

  35. Zhou E, Cong J, Wei Q, Tajima K, Yang C, Hashimoto K (2011) All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. Angew Chem Int Ed 50(12):2799–2803

    CAS  Google Scholar 

  36. Havinga EE, Ten Hoeve W, Wynberg H (1993) Alternate donor–acceptor small-band-gap semiconducting polymers; Polysquaraines and polycroconaines. Synth Metals 55(1):299–306

    CAS  Google Scholar 

  37. Kitamura C, Tanaka S, Yamashita Y (1996) Design of narrow-bandgap polymers: syntheses and properties of monomers and polymers containing aromatic-donor and o-quinoid-acceptor units. Chem Mater 8(2):570–578

    CAS  Google Scholar 

  38. Jayakannan M, Van Hal PA, Janssen RA (2002) Synthesis and structure-property relationship of new donor–acceptor-type conjugated monomers and polymers on the basis of thiophene and benzothiadiazole. J Polym Sci Part A Polym Chem 40(2):251–261

    CAS  Google Scholar 

  39. Sivula K, Luscombe CK, Thompson BC, Fréchet JM (2006) Enhancing the thermal stability of polythiophene: fullerene solar cells by decreasing effective polymer regioregularity. J Am Chem Soc 128(43):13988–13989

    CAS  PubMed  Google Scholar 

  40. Zhou H, Yang L, You W (2012) Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45(2):607–632

    CAS  Google Scholar 

  41. Son HJ, He F, Carsten B, Yu L (2011) Are we there yet? Design of better conjugated polymers for polymer solar cells. J Mater Chem 21:18934–18945

    CAS  Google Scholar 

  42. Keshtov ML, Sharma GD, Kochurov VS, Khokhlov AR (2013) New donor–acceptor conjugated polymers based on benzo[1,2-b:4,5-b]dithiophene for photovoltaic cells. Synth Met 166:7–13

    CAS  Google Scholar 

  43. Karpagam S, Guhanathan S (2014) Emitting oligomer containing quinoline group: synthesis and photophysical properties of conjugated oligomer obtained by Wittig reaction. J Lumin 145:752–759

    CAS  Google Scholar 

  44. Vishnumurthy KA, Sunitha MS, Philip R, Adhikari AV (2011) New diphenylamine-based donor–acceptor-type conjugated polymers as potential photonic materials. React Funct Polym 71(12):1119–1128

    CAS  Google Scholar 

  45. Upadhyay A, Karpagam S (2017) Synthesis and photo physical properties of carbazole based quinoxaline conjugated polymer for fluorescent detection of Ni2+. Dyes Pigm 139:50–64

    CAS  Google Scholar 

  46. Ammar KB, Guergouri M, Mosbah S, Bencharif L (2015) The synthesis, physicochemcal properties and electrochemical polymerization of fluorene-based derivatives as precursors for conjugated polymers. Tetrahedron Lett 56:2574–2578

    Google Scholar 

  47. Huo L, He C, Han M, Zhou E, Li Y (2007) Alternating copolymers of electron-rich arylamine and electron-deficient 2, 1, 3-benzothiadiazole: synthesis, characterization and photovoltaic properties. J Polym Sci Part A Polym Chem 45(17):3861–3871

    CAS  Google Scholar 

  48. Casey A, Ashraf RS, Fei Z, Heeney M (2014) Thioalkyl-substituted benzothiadiazole acceptors: copolymerization with carbazole affords polymers with large stokes shifts and high solar cell voltages. Macromolecules 47(7):2279–2288

    CAS  Google Scholar 

  49. Casey A, Han Y, Fei Z, White AJ, Anthopoulos TD, Heeney M (2015) Cyano substituted benzothiadiazole: a novel acceptor inducing n-type behaviour in conjugated polymers. J Mater Chem C 3(2):265–275

    CAS  Google Scholar 

  50. Mikroyannidis JA, Stylianakis MM, Suresh P, Balraju P, Sharma GD (2009) Low band gap vinylene compounds with triphenylamine and benzothiadiazole segments for use in photovoltaic cells. Org Electron 10(7):1320–1333

    CAS  Google Scholar 

  51. Ke L, Chen P, Kumar RS, Burden AP, Chua SJ (2006) Indium-tin-oxide-free organic light-emitting device. IEEE Trans Electron Devices 53(6):1483–1486

    Google Scholar 

  52. Moore W, Silver M (1960) Generation of free carriers in photoconducting anthracene. I. J Chem Phys 33(6):1671–1676

    CAS  Google Scholar 

  53. Ranjan S, Balaji S, Panella RA, Ydstie BE (2011) Silicon solar cell production. Comput Chem Eng 35(8):1439–1453

    Google Scholar 

  54. Yang X, Loos J, Veenstra SC, Verhees WJ, Wienk MM, Kroon JM, Janssen RA (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5(4):579–583

    CAS  PubMed  Google Scholar 

  55. Krebs FC, Norrman K (2007) Analysis of the failure mechanism for a stable organic photovoltaic during 10,000 h of testing. Prog Photovoltaics Res Appl 15(8):697–712

    CAS  Google Scholar 

  56. Gunes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338

    PubMed  Google Scholar 

  57. Yu G, Heeger AJ (1995) Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J Appl Phys 78(7):4510–4515

    CAS  Google Scholar 

  58. Cui C, Wong W-Y, Li Y (2014) Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy Environ Sci 7:2276–2284

    CAS  Google Scholar 

  59. Cui C, He Z, Wu Y, Cheng X, Wu H, Li Y, Cao Y, Wong W-Y (2016) High-performance polymer solar cells based on a 2D-conjugated polymer with an alkylthio side-chain. Energy Environ Sci 9:885–891

    CAS  Google Scholar 

  60. Yang H, Wu Y, Zou Y, Dong Y, Yuan J, Cui C, Li Y (2018) A new polymer donor for efficient polymer solar cells: simultaneously realizing high short-circuit current density and transparency. J Mater Chem A 6:14700–14708

    CAS  Google Scholar 

  61. Guo B, Li W, Luo G, Guo X, Yao H, Zhang M, Hou J, Li Y, Wong W-Y (2018) Exceeding 14% efficiency for solution-processed tandem organic solar cels combining fullerene and nonfullerene-based subcells with complementary absorption. ACS Energy Lett 3:2566–2572

    CAS  Google Scholar 

  62. Grisorio R, Allegretta G, Romanazzi G, Suranna GP, Mastrorilli P, Mazzeo M, Gigli G (2012) An insight into the potential of random poly(heteroarylene–vinylene)s as donor materials in bulk heterojunction solar cells. Macromolecules 45(16):6396–6404

    CAS  Google Scholar 

  63. Liu D, Sun L, Du Z, Xiao M, Gu C, Wang T, Yang R (2014) Benzothiadiazole—an excellent acceptor for indacenodithiophene based polymer solar cells. RSC Adv 4(71):37934–37940

    CAS  Google Scholar 

  64. Guo X, Baumgarten M, Mullen K (2013) Designing π-conjugated polymers for organic electronics. Prog Polym Sci 38(12):1832–1908

    CAS  Google Scholar 

  65. Huang YQ, Liu XF, Fan QL, Wang L, Song S, Wang LH, Huang W (2009) Tuning backbones and side-chains of cationic conjugated polymers for optical signal amplification of fluorescent DNA detection. Biosens Bioelectron 24(10):2973–2978

    CAS  PubMed  Google Scholar 

  66. Hu Y, Xiao Y, Huang H, Yin D, Xiao X, Tan W (2011) An anion-conjugated polyelectrolyte designed for the selective and sensitive detection of silver (I). Chem Asian J 6(6):1500–1504

    CAS  PubMed  Google Scholar 

  67. Jeong SH, Lee JY, Lim B, Lee J, Noh YY (2017) Diketopyrrolopyrrole-based conjugated polymer for printed organic field-effect transistors and gas sensors. Dyes Pigm 140:244–249

    CAS  Google Scholar 

  68. Kane-Maguire LAP, Wallace GG (2001) Communicating with the building blocks of life using organic electronic conductors. Synth Met 119(1):39–42

    CAS  Google Scholar 

  69. Riul A, Soto AG, Mello SV, Bone S, Taylor DM, Mattoso LHC (2003) An electronic tongue using polypyrrole and polyaniline. Synth Met 132(2):109–116

    CAS  Google Scholar 

  70. Emre FB, Ekiz F, Balan A, Emre S, Timur S, Toppare L (2011) Conducting polymers with benzothiadiazole and benzoselenadiazole units for biosensor applications. Sens Actuators B Chem 158(1):117–123

    CAS  Google Scholar 

  71. Ma F, Shi W, Mi H, Luo J, Lei Y, Tian Y (2013) Triphenylamine-based conjugated polymer/I complex as turn-on optical probe for mercury (II) ion. Sens Actuators B Chem 182:782–788

    CAS  Google Scholar 

  72. Levesque I, Leclerc M (1996) Ionochromic and thermochromic phenomena in a regioregular polythiophene derivative bearing oligo (oxyethylene) side chains. Chem Mater 8(12):2843–2849

    CAS  Google Scholar 

  73. Fan LJ, Zhang Y, Murphy CB, Angell SE, Parker MF, Flynn BR, Jones WE Jr (2009) Fluorescent conjugated polymer molecular wire chemosensors for transition metal ion recognition and signalling. Coord Chem Rev 253(3–4):410–422

    CAS  Google Scholar 

  74. Boutagy J, Thomas R (1974) Olefin synthesis with organic phosphonate carbanions. Chem Rev 74(1):87–99

    CAS  Google Scholar 

  75. Cui W, Wang L, Xiang G, Zhou L, An X, Cao D (2015) A colorimetric and fluorescence “turn-off” chemosensor for the detection of silver ion based on a conjugated polymer containing 2, 3-di(pyridin-2-yl) quinoxaline. Sens Actuators B Chem 207:281–290

    CAS  Google Scholar 

  76. Rurack K, Kollmannsberger M, Resch-Genger U, Daub J (2000) A selective and sensitive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units. J Am Chem Soc 122(5):968–969

    CAS  Google Scholar 

  77. Fan LJ, Jones WE (2006) A highly selective and sensitive inorganic/organic hybrid polymer fluorescence “turn-on” chemosensory system for iron cations. J Am Chem Soc 128(21):6784–6785

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shi W, Ma F, Xie Z (2015) Sulfur-containing, triphenylamine-based red-emitting conjugated polymer/I assembly as turn-on optical probe for mercury (II) ion. Sens Actuators B Chem 220:600–606

    CAS  Google Scholar 

  79. Feng L, Deng Y, Wang X, Liu M (2017) Polymer fluorescent probe for Hg(II) with thiophene, benzothiazole and quinoline groups. Sens Actuators B Chem 245:441–447

    CAS  Google Scholar 

  80. Pavase TR, Lin H, Li Z (2015) Rapid detection methodology for inorganic mercury (Hg2+) in seafood samples using conjugated polymer (1,4-bis-(8-(4-phenylthiazole-2-thiol)-octyloxy)-benzene) (PPT) by colorimetric and fluorescence spectroscopy. Sens Actuators B Chem 220:406–413

    CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the VIT University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Karpagam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, K., Karpagam, S. & Pandian, K. How to Design Donor–Acceptor Based Heterocyclic Conjugated Polymers for Applications from Organic Electronics to Sensors. Top Curr Chem (Z) 377, 12 (2019). https://doi.org/10.1007/s41061-019-0237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0237-4

Keywords

Navigation