Skip to main content
Log in

Tailoring and investigation of defined porosity properties in thin-walled 316L structures using laser-based powder bed fusion

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Process engineering applications, which require a defined mass transport, call for thin-walled structures with a defined open porosity. Powder bed fusion by a laser beam (PBF-LB) is investigated as a potential manufacturing method using stainless steel 316L to produce such structures. The total porosity was determined by weighing and volume measurement. The influence of the process parameters laser power, scan speed and hatch distance on porosity was investigated by means of a design of experiments (DoE) approach using a central composite design (CCD). A statistically significant regression model was developed to allow a prediction of the porosity values within the design space. To determine the distribution and size of porous sections, computed tomography and a microscope in transmitted light mode were used as well. Permeability was also analyzed. Within the design space, a permeability coefficient of 2258.26 E−12 m2 was achieved with a maximum porosity value of 19.00%. With the help of the CT analysis, it was determined that for area laser energy densities between 0.625 and 0.744 J/mm2, the average pore size from 4728.57 to 9841.38 µm2 can be adapted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002

    Article  Google Scholar 

  2. Thieme M, Wieters K-P, Bergner F et al (2001) Titanium sintering for preparation of a porous functionally graded material destined for orthopaedic implants. J Mater Sci Mater Med 12(3):225–231. https://doi.org/10.1023/A:1008958914818

    Article  Google Scholar 

  3. Sing SL, Wiria FE, Yeong WY (2018) Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot Comput Integr Manuf 49:170–180. https://doi.org/10.1016/j.rcim.2017.06.006

    Article  Google Scholar 

  4. Evans AG, Hutchinson JW, Fleck NA et al (2001) The topological design of multifunctional cellular metals. Prog Mater Sci 46(3–4):309–327. https://doi.org/10.1016/S0079-6425(00)00016-5

    Article  Google Scholar 

  5. Yan C, Hao L, Hussein A et al (2014) Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 55:533–541. https://doi.org/10.1016/j.matdes.2013.10.027

    Article  Google Scholar 

  6. Attenborough K (1982) Acoustical characteristics of porous materials. Phys Rep 82(3):179–227. https://doi.org/10.1016/0370-1573(82)90131-4

    Article  Google Scholar 

  7. Oh I-H, Nomura N, Masahashi N et al (2003) Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater 49(12):1197–1202. https://doi.org/10.1016/j.scriptamat.2003.08.018

    Article  Google Scholar 

  8. Dzmitry M, Klimenty B (2016) A porous materials production with an electric discharge sintering. Int J Refract Metals Hard Mater 59:67–77. https://doi.org/10.1016/j.ijrmhm.2016.05.015

    Article  Google Scholar 

  9. Yamada Y, Shimojima K, Sakaguchi Y et al (2000) Processing of cellular magnesium materials. Adv Eng Mater 2(4):184–187. https://doi.org/10.1002/(SICI)1527-2648(200004)2:4%3c184:AID-ADEM184%3e3.0.CO;2-W

    Article  Google Scholar 

  10. Yablokova G, Speirs M, van Humbeeck J et al (2015) Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants. Powder Technol 283:199–209. https://doi.org/10.1016/j.powtec.2015.05.015

    Article  Google Scholar 

  11. Kumar A, Reddy RG (2004) Materials and design development for bipolar/end plates in fuel cells. J Power Sources 129(1):62–67. https://doi.org/10.1016/j.jpowsour.2003.11.011

    Article  Google Scholar 

  12. Kempen K, Thijs L, van Humbeeck J et al (2012) Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Proced 39:439–446. https://doi.org/10.1016/j.phpro.2012.10.059

    Article  Google Scholar 

  13. Stoffregen H, Fischer J, Siedelhofer C et al (2011) Selective laser melting of porous structures. In: Solid freeform fabrication symposium, Austin, Texas, 8–10 Aug. 2011, pp 680–695

  14. Spierings AB, Wegener K, Levy G (2012) Designing material properties locally with additive manufacturing technology SLM. In: Proceedings solid freeform fabrication symposium, pp 447–455

  15. Spierings AB, Schneider M, Eggenberger R (2011) Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyp J 17(5):380–386. https://doi.org/10.1108/13552541111156504

    Article  Google Scholar 

  16. Li R, Liu J, Shi Y et al (2010) 316L stainless steel with gradient porosity fabricated by selective laser melting. J Mater Eng Perform 19(5):666–671. https://doi.org/10.1007/s11665-009-9535-2

    Article  Google Scholar 

  17. Ibrahim KA, Wu B, Brandon NP (2016) Electrical conductivity and porosity in stainless steel 316L scaffolds for electrochemical devices fabricated using selective laser sintering. Mater Des 106:51–59. https://doi.org/10.1016/j.matdes.2016.05.096

    Article  Google Scholar 

  18. Gu D, Shen Y (2008) Processing conditions and microstructural features of porous 316L stainless steel components by DMLS. Appl Surf Sci 255(5):1880–1887. https://doi.org/10.1016/j.apsusc.2008.06.118

    Article  Google Scholar 

  19. Rao H, Giet S, Yang K et al (2016) The influence of processing parameters on aluminium alloy A357 manufactured by selective laser melting. Mater Des 109:334–346. https://doi.org/10.1016/j.matdes.2016.07.009

    Article  Google Scholar 

  20. Cai X, Malcolm AA, Wong BS et al (2015) Measurement and characterization of porosity in aluminium selective laser melting parts using X-ray CT. Virtual Phys Prototyp 10(4):195–206. https://doi.org/10.1080/17452759.2015.1112412

    Article  Google Scholar 

  21. Zhou X, Wang D, Liu X et al (2015) 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT. Acta Mater 98:1–16. https://doi.org/10.1016/j.actamat.2015.07.014

    Article  Google Scholar 

  22. Sufiiarov VS, Popovich AA, Borisov EV et al (2017) The effect of layer thickness at selective laser melting. Proced Eng 174:126–134. https://doi.org/10.1016/j.proeng.2017.01.179

    Article  Google Scholar 

  23. Habijan T, Haberland C, Meier H et al (2013) The biocompatibility of dense and porous nickel–titanium produced by selective laser melting. Mater Sci Eng C Mater Biol Appl 33(1):419–426. https://doi.org/10.1016/j.msec.2012.09.008

    Article  Google Scholar 

  24. Gong H (2013) Generation and detection of defects in metallic parts fabricated by selective laser melting and electron beam melting and their effects on mechanical properties. https://doi.org/10.18297/etd/515

  25. Abele E, Stoffregen HA, Kniepkamp M et al (2015) Selective laser melting for manufacturing of thin-walled porous elements. J Mater Process Technol 215:114–122. https://doi.org/10.1016/j.jmatprotec.2014.07.017

    Article  Google Scholar 

  26. Kaserer S, Caldwell KM, Ramaker DE et al (2013) Analyzing the influence of H3PO4 as catalyst poison in high temperature PEM fuel cells using in-operando X-ray absorption spectroscopy. J Phys Chem C 117(12):6210–6217. https://doi.org/10.1021/jp311924q

    Article  Google Scholar 

  27. Bevilacqua N, George MG, Galbiati S et al (2017) Phosphoric acid invasion in high temperature PEM fuel cell gas diffusion layers. Electrochim Acta 257:89–98. https://doi.org/10.1016/j.electacta.2017.10.054

    Article  Google Scholar 

  28. Oñoro J (2009) Corrosion fatigue behaviour of 317LN austenitic stainless steel in phosphoric acid. Int J Press Vessels Pip 86(10):656–660. https://doi.org/10.1016/j.ijpvp.2009.06.001

    Article  Google Scholar 

  29. Schaeffler AL (1949) Constitution diagram for stainless steel weld metal. Metal Prog 56:680

    Google Scholar 

  30. Pleshivtsev VG, Filippov GA, Pak YA et al (2009) Effect of carbon content and stressed state on the corrosion rate of pipe steel in heating systems. Metallurgist 53(7–8):502–505. https://doi.org/10.1007/s11015-009-9188-2

    Article  Google Scholar 

  31. Sánchez-Tovar R, Montañés MT, García-Antón J et al (2011) Corrosion behaviour of micro-plasma arc welded stainless steels in H3PO4 under flowing conditions at different temperatures. Corros Sci 53(4):1237–1246. https://doi.org/10.1016/j.corsci.2010.12.017

    Article  Google Scholar 

  32. New York International Nickel Co., Inc. (1963) Corrosion resistance of the austenitic chromium–nickel stainless steels in chemical environments. New York International Nickel Co. Inc., New York

    Google Scholar 

  33. Lizlovs EA (1969) Corrosion behavior of types 304 and 316 stainless steel in hot 85% phosphoric acid. Corrosion 25(9):389–393. https://doi.org/10.5006/0010-9312-25.9.389

    Article  Google Scholar 

  34. Siebertz K, van Bebber D, Hochkirchen T (2010) Statistische versuchsplanung. Springer, Berlin. https://doi.org/10.1007/978-3-642-05493-8

    Book  Google Scholar 

  35. Ho ST, Hutmacher DW (2006) A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27(8):1362–1376. https://doi.org/10.1016/j.biomaterials.2005.08.035

    Article  Google Scholar 

  36. Zalc JM, Reyes SC, Iglesia E (2004) The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures. Chem Eng Sci 59(14):2947–2960. https://doi.org/10.1016/j.ces.2004.04.028

    Article  Google Scholar 

  37. Cindrella L, Kannan AM, Lin JF et al (2009) Gas diffusion layer for proton exchange membrane fuel cells—a review. J Power Sources 194(1):146–160. https://doi.org/10.1016/j.jpowsour.2009.04.005

    Article  Google Scholar 

  38. Ostadi H, Rama P, Liu Y et al (2010) 3D reconstruction of a gas diffusion layer and a microporous layer. J Membr Sci 351(1–2):69–74. https://doi.org/10.1016/j.memsci.2010.01.031

    Article  Google Scholar 

  39. Thijs L, Verhaeghe F, Craeghs T et al (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater 58(9):3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004

    Article  Google Scholar 

  40. Töpler J, Lehmann J (2014) Wasserstoff und Brennstoffzelle. Springer, Berlin. https://doi.org/10.1007/978-3-642-37415-9

    Book  Google Scholar 

  41. Reitz W (2007) Handbook of fuel cells: fundamentals, technology, and applications. In: Vielstich W, Lamm A, Gasteiger HA (eds) Materials and manufacturing processes, 22nd edn. Wiley, New York, p 789. https://doi.org/10.1080/10426910701416336

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors extend their thanks to the German Research Foundation (DFG) for the funding of the projects AB 133/97-1 and HA 1283/11-1. This support has enabled the described investigations in the area of additive manufacturing, which have led to the results presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Reiber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abele, E., Reiber, T., Hampe, M. et al. Tailoring and investigation of defined porosity properties in thin-walled 316L structures using laser-based powder bed fusion. Prog Addit Manuf 4, 451–463 (2019). https://doi.org/10.1007/s40964-019-00095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-019-00095-5

Keywords

Navigation