Advertisement

Progress in Additive Manufacturing

, Volume 4, Issue 4, pp 451–463 | Cite as

Tailoring and investigation of defined porosity properties in thin-walled 316L structures using laser-based powder bed fusion

  • Eberhard Abele
  • Thorsten ReiberEmail author
  • Manfred Hampe
  • María Catalina Bermúdez Agudelo
  • Fabian Menz
Full Research Article

Abstract

Process engineering applications, which require a defined mass transport, call for thin-walled structures with a defined open porosity. Powder bed fusion by a laser beam (PBF-LB) is investigated as a potential manufacturing method using stainless steel 316L to produce such structures. The total porosity was determined by weighing and volume measurement. The influence of the process parameters laser power, scan speed and hatch distance on porosity was investigated by means of a design of experiments (DoE) approach using a central composite design (CCD). A statistically significant regression model was developed to allow a prediction of the porosity values within the design space. To determine the distribution and size of porous sections, computed tomography and a microscope in transmitted light mode were used as well. Permeability was also analyzed. Within the design space, a permeability coefficient of 2258.26 E−12 m2 was achieved with a maximum porosity value of 19.00%. With the help of the CT analysis, it was determined that for area laser energy densities between 0.625 and 0.744 J/mm2, the average pore size from 4728.57 to 9841.38 µm2 can be adapted.

Keywords

Additive manufacturing Powder bed fusion 316L Porosity Thin walls 

Notes

Acknowledgements

The authors extend their thanks to the German Research Foundation (DFG) for the funding of the projects AB 133/97-1 and HA 1283/11-1. This support has enabled the described investigations in the area of additive manufacturing, which have led to the results presented in this article.

References

  1. 1.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491.  https://doi.org/10.1016/j.biomaterials.2005.02.002 CrossRefGoogle Scholar
  2. 2.
    Thieme M, Wieters K-P, Bergner F et al (2001) Titanium sintering for preparation of a porous functionally graded material destined for orthopaedic implants. J Mater Sci Mater Med 12(3):225–231.  https://doi.org/10.1023/A:1008958914818 CrossRefGoogle Scholar
  3. 3.
    Sing SL, Wiria FE, Yeong WY (2018) Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot Comput Integr Manuf 49:170–180.  https://doi.org/10.1016/j.rcim.2017.06.006 CrossRefGoogle Scholar
  4. 4.
    Evans AG, Hutchinson JW, Fleck NA et al (2001) The topological design of multifunctional cellular metals. Prog Mater Sci 46(3–4):309–327.  https://doi.org/10.1016/S0079-6425(00)00016-5 CrossRefGoogle Scholar
  5. 5.
    Yan C, Hao L, Hussein A et al (2014) Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 55:533–541.  https://doi.org/10.1016/j.matdes.2013.10.027 CrossRefGoogle Scholar
  6. 6.
    Attenborough K (1982) Acoustical characteristics of porous materials. Phys Rep 82(3):179–227.  https://doi.org/10.1016/0370-1573(82)90131-4 CrossRefGoogle Scholar
  7. 7.
    Oh I-H, Nomura N, Masahashi N et al (2003) Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater 49(12):1197–1202.  https://doi.org/10.1016/j.scriptamat.2003.08.018 CrossRefGoogle Scholar
  8. 8.
    Dzmitry M, Klimenty B (2016) A porous materials production with an electric discharge sintering. Int J Refract Metals Hard Mater 59:67–77.  https://doi.org/10.1016/j.ijrmhm.2016.05.015 CrossRefGoogle Scholar
  9. 9.
    Yamada Y, Shimojima K, Sakaguchi Y et al (2000) Processing of cellular magnesium materials. Adv Eng Mater 2(4):184–187.  https://doi.org/10.1002/(SICI)1527-2648(200004)2:4%3c184:AID-ADEM184%3e3.0.CO;2-W CrossRefGoogle Scholar
  10. 10.
    Yablokova G, Speirs M, van Humbeeck J et al (2015) Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants. Powder Technol 283:199–209.  https://doi.org/10.1016/j.powtec.2015.05.015 CrossRefGoogle Scholar
  11. 11.
    Kumar A, Reddy RG (2004) Materials and design development for bipolar/end plates in fuel cells. J Power Sources 129(1):62–67.  https://doi.org/10.1016/j.jpowsour.2003.11.011 CrossRefGoogle Scholar
  12. 12.
    Kempen K, Thijs L, van Humbeeck J et al (2012) Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Proced 39:439–446.  https://doi.org/10.1016/j.phpro.2012.10.059 CrossRefGoogle Scholar
  13. 13.
    Stoffregen H, Fischer J, Siedelhofer C et al (2011) Selective laser melting of porous structures. In: Solid freeform fabrication symposium, Austin, Texas, 8–10 Aug. 2011, pp 680–695Google Scholar
  14. 14.
    Spierings AB, Wegener K, Levy G (2012) Designing material properties locally with additive manufacturing technology SLM. In: Proceedings solid freeform fabrication symposium, pp 447–455Google Scholar
  15. 15.
    Spierings AB, Schneider M, Eggenberger R (2011) Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyp J 17(5):380–386.  https://doi.org/10.1108/13552541111156504 CrossRefGoogle Scholar
  16. 16.
    Li R, Liu J, Shi Y et al (2010) 316L stainless steel with gradient porosity fabricated by selective laser melting. J Mater Eng Perform 19(5):666–671.  https://doi.org/10.1007/s11665-009-9535-2 CrossRefGoogle Scholar
  17. 17.
    Ibrahim KA, Wu B, Brandon NP (2016) Electrical conductivity and porosity in stainless steel 316L scaffolds for electrochemical devices fabricated using selective laser sintering. Mater Des 106:51–59.  https://doi.org/10.1016/j.matdes.2016.05.096 CrossRefGoogle Scholar
  18. 18.
    Gu D, Shen Y (2008) Processing conditions and microstructural features of porous 316L stainless steel components by DMLS. Appl Surf Sci 255(5):1880–1887.  https://doi.org/10.1016/j.apsusc.2008.06.118 CrossRefGoogle Scholar
  19. 19.
    Rao H, Giet S, Yang K et al (2016) The influence of processing parameters on aluminium alloy A357 manufactured by selective laser melting. Mater Des 109:334–346.  https://doi.org/10.1016/j.matdes.2016.07.009 CrossRefGoogle Scholar
  20. 20.
    Cai X, Malcolm AA, Wong BS et al (2015) Measurement and characterization of porosity in aluminium selective laser melting parts using X-ray CT. Virtual Phys Prototyp 10(4):195–206.  https://doi.org/10.1080/17452759.2015.1112412 CrossRefGoogle Scholar
  21. 21.
    Zhou X, Wang D, Liu X et al (2015) 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT. Acta Mater 98:1–16.  https://doi.org/10.1016/j.actamat.2015.07.014 CrossRefGoogle Scholar
  22. 22.
    Sufiiarov VS, Popovich AA, Borisov EV et al (2017) The effect of layer thickness at selective laser melting. Proced Eng 174:126–134.  https://doi.org/10.1016/j.proeng.2017.01.179 CrossRefGoogle Scholar
  23. 23.
    Habijan T, Haberland C, Meier H et al (2013) The biocompatibility of dense and porous nickel–titanium produced by selective laser melting. Mater Sci Eng C Mater Biol Appl 33(1):419–426.  https://doi.org/10.1016/j.msec.2012.09.008 CrossRefGoogle Scholar
  24. 24.
    Gong H (2013) Generation and detection of defects in metallic parts fabricated by selective laser melting and electron beam melting and their effects on mechanical properties.  https://doi.org/10.18297/etd/515
  25. 25.
    Abele E, Stoffregen HA, Kniepkamp M et al (2015) Selective laser melting for manufacturing of thin-walled porous elements. J Mater Process Technol 215:114–122.  https://doi.org/10.1016/j.jmatprotec.2014.07.017 CrossRefGoogle Scholar
  26. 26.
    Kaserer S, Caldwell KM, Ramaker DE et al (2013) Analyzing the influence of H3PO4 as catalyst poison in high temperature PEM fuel cells using in-operando X-ray absorption spectroscopy. J Phys Chem C 117(12):6210–6217.  https://doi.org/10.1021/jp311924q CrossRefGoogle Scholar
  27. 27.
    Bevilacqua N, George MG, Galbiati S et al (2017) Phosphoric acid invasion in high temperature PEM fuel cell gas diffusion layers. Electrochim Acta 257:89–98.  https://doi.org/10.1016/j.electacta.2017.10.054 CrossRefGoogle Scholar
  28. 28.
    Oñoro J (2009) Corrosion fatigue behaviour of 317LN austenitic stainless steel in phosphoric acid. Int J Press Vessels Pip 86(10):656–660.  https://doi.org/10.1016/j.ijpvp.2009.06.001 CrossRefGoogle Scholar
  29. 29.
    Schaeffler AL (1949) Constitution diagram for stainless steel weld metal. Metal Prog 56:680Google Scholar
  30. 30.
    Pleshivtsev VG, Filippov GA, Pak YA et al (2009) Effect of carbon content and stressed state on the corrosion rate of pipe steel in heating systems. Metallurgist 53(7–8):502–505.  https://doi.org/10.1007/s11015-009-9188-2 CrossRefGoogle Scholar
  31. 31.
    Sánchez-Tovar R, Montañés MT, García-Antón J et al (2011) Corrosion behaviour of micro-plasma arc welded stainless steels in H3PO4 under flowing conditions at different temperatures. Corros Sci 53(4):1237–1246.  https://doi.org/10.1016/j.corsci.2010.12.017 CrossRefGoogle Scholar
  32. 32.
    New York International Nickel Co., Inc. (1963) Corrosion resistance of the austenitic chromium–nickel stainless steels in chemical environments. New York International Nickel Co. Inc., New YorkGoogle Scholar
  33. 33.
    Lizlovs EA (1969) Corrosion behavior of types 304 and 316 stainless steel in hot 85% phosphoric acid. Corrosion 25(9):389–393.  https://doi.org/10.5006/0010-9312-25.9.389 CrossRefGoogle Scholar
  34. 34.
    Siebertz K, van Bebber D, Hochkirchen T (2010) Statistische versuchsplanung. Springer, Berlin.  https://doi.org/10.1007/978-3-642-05493-8 CrossRefGoogle Scholar
  35. 35.
    Ho ST, Hutmacher DW (2006) A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27(8):1362–1376.  https://doi.org/10.1016/j.biomaterials.2005.08.035 CrossRefGoogle Scholar
  36. 36.
    Zalc JM, Reyes SC, Iglesia E (2004) The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures. Chem Eng Sci 59(14):2947–2960.  https://doi.org/10.1016/j.ces.2004.04.028 CrossRefGoogle Scholar
  37. 37.
    Cindrella L, Kannan AM, Lin JF et al (2009) Gas diffusion layer for proton exchange membrane fuel cells—a review. J Power Sources 194(1):146–160.  https://doi.org/10.1016/j.jpowsour.2009.04.005 CrossRefGoogle Scholar
  38. 38.
    Ostadi H, Rama P, Liu Y et al (2010) 3D reconstruction of a gas diffusion layer and a microporous layer. J Membr Sci 351(1–2):69–74.  https://doi.org/10.1016/j.memsci.2010.01.031 CrossRefGoogle Scholar
  39. 39.
    Thijs L, Verhaeghe F, Craeghs T et al (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater 58(9):3303–3312.  https://doi.org/10.1016/j.actamat.2010.02.004 CrossRefGoogle Scholar
  40. 40.
    Töpler J, Lehmann J (2014) Wasserstoff und Brennstoffzelle. Springer, Berlin.  https://doi.org/10.1007/978-3-642-37415-9 CrossRefGoogle Scholar
  41. 41.
    Reitz W (2007) Handbook of fuel cells: fundamentals, technology, and applications. In: Vielstich W, Lamm A, Gasteiger HA (eds) Materials and manufacturing processes, 22nd edn. Wiley, New York, p 789.  https://doi.org/10.1080/10426910701416336 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eberhard Abele
    • 1
  • Thorsten Reiber
    • 1
    Email author
  • Manfred Hampe
    • 2
  • María Catalina Bermúdez Agudelo
    • 2
  • Fabian Menz
    • 1
  1. 1.Institute of Production Management, Technology and Machine Tools (PTW)Technical University of DarmstadtDarmstadtGermany
  2. 2.Institute for Nano- and Microfluidics, Thermal Process Engineering GroupTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations