Skip to main content
Log in

Kinetics of Nucleation and Growth of Graphite at Different Stages of Solidification for Spheroidal Graphite Iron

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The importance of the nucleation and growth phenomena that controls the solidification of castings on the mechanical properties and soundness of cast iron cannot be overemphasized. The graphite nucleation mechanism is directly related to the carbon content of the iron and the inoculation treatment. To further understand these phenomena, interrupted solidification experiments were conducted on spheroidal graphite irons at three different levels of carbon equivalent (4.0, 4.2, 4.4), with and without the addition of a commercial inoculant. A detailed scanning electron microscopy investigation was carried out to analyze and quantify the possible nucleation sites at different solid fractions, as well as the influence of the inoculant in their formation. Thermodynamic software was used to evaluate the probability of formation of the compounds. A detailed discussion on the differences in nucleation of graphite between the beginning and end of solidification is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. R.J. Warrick, AFS Cast Met. Res. J. 2, 97–108 (1966)

  2. H. Nakae, Y. Igarashi, Y. Ono, J. Jap. Foundry Eng. Doc 73, 111–117 (2001)

    Google Scholar 

  3. T. Skaland, T. Grong, Met. Trans. 24A(10), 2321–2345 (1993)

    Article  Google Scholar 

  4. M. Chisamera, I. Riposan, S. Stan, T. Skaland. Proceedings of the 64th World Foundry Congress, Paris, France (Paper No. 62) (2000)

  5. P.E.A. Van Nieuwland, Metalen, Jaargang VIII, nr.18, 333–335 (2004)

  6. S.I. Karsay, Uitgave QIT, 1976 and 1980

  7. S.I. Karsay, Ductile Iron I: Production, Quebec Iron &Titanium Corp. (1976)

  8. A. Boyles, Ohio: Metals Park (1947)

  9. J.T. Eash, AFS Trans. 49, 887–906 (1941)

    Google Scholar 

  10. G.A. Feest, G. McHugh, D.O. Morton, I.S. Welch, I.A. Cook, Proceedings of Solidification Technology in the Foundry and Casthouse (1983)

  11. S. Steeb, U. Maier, in Georgi Publishing, ed. by B. Lux, I. Minkoff, F. Mollard (St. Saphorin, Switzerland, 1974), pp. 1–11

    Google Scholar 

  12. W. Krieger, H. Trenkler, Arch. Eisenhuttenwesen 42, 175 (1971)

    Google Scholar 

  13. A.A. Vertman, A.M. Samarin, Dokl. Akad. Nauk SSSR 134, 629 (1960)

    Google Scholar 

  14. A.M. Samarin, V.A. Izmailov, Soviet Phys. Dokladi 14, 392 (1969)

    Google Scholar 

  15. D.M. Stefanescu, G. Alonso, P. Larrañaga, R. Suarez, Acta mater. 103, 103–114 (2016)

  16. B. Lux, Modern Cast. 45, 222–232 (1964)

    Google Scholar 

  17. C.H. Wang, H. Fredriksson, 48th International Foundry Congress, Varna, Bulgaria (1981)

  18. H. Fredriksson, Mat. Sci. Eng. 65, 137–144 (1984)

    Article  Google Scholar 

  19. M.A. Gadd, G.H.J. Bennett, 3rd International Symposium on the Physical Metallurgy of cast Iron, Stockholm (1984)

  20. M.H. Jacobs, T.J. Law, D.A. Melford, M.J. Stowell, Met. Tech. 1, 490–500 (1974)

    Article  Google Scholar 

  21. K.M. Muzumdar, J.F. Wallace, AFS Trans. 81, 412–423 (1973)

    Google Scholar 

  22. R.L. Naro, J.F. Wallace, AFS Trans. 78, 229–238 (1970)

    Google Scholar 

  23. G.X. Sun, C.R. Loper, AFS Trans. 91, 639–646 (1983)

    Google Scholar 

  24. M.J. Lalich, J.R. Hitchings, AFS Trans. 84, 653–664 (1976)

    Google Scholar 

  25. T. Kusakawa, S. Okimoto, K. Kobayashi, K. Ide, H. Okita, The Casting Research Laboratory (Waseda University, Tokyo, 1988)

    Google Scholar 

  26. R.J. Warrick, AFS Trans. 74, 722–733 (1966)

    Google Scholar 

  27. T. Skaland, AFS Trans. 105, 77–88 (2001)

    Google Scholar 

  28. Y. Igarashi, S. Okada, Int. J. Cast. Met. Res. 11, 83–88 (1998)

    Article  Google Scholar 

  29. M.H. Jacobs, T.J. Law, D.A. Melford, M.J. Stowell, Met. Tech. 3, 98–108 (1976)

    Article  Google Scholar 

  30. Y. Igarashi, H. Nakae, J. Jap, Foundry Eng. Soc. 74, 30–35 (2002)

    Google Scholar 

  31. G. Alonso, D.M. Stefanescu, P. Larrañaga, J. Sertucha, R. Suarez, AFS Trans. 120, 329–335 (2012)

    Google Scholar 

  32. L.J. Kozlov, A.P. Vorobyev, Cast Met. 4(1), 7–10 (1991)

  33. P.J. Bilek, J.M. Dong, T.K. McCluhan, AFS Trans. 80, 183–188 (1972)

  34. G. Alonso, D.M. Stefanescu, P. Larrañaga, E. De la Fuente, R. Suarez, AFS Proceedings, Paper 16-020 (2016)

  35. J.K. Soldberg, M.I. Onsoien, Mater. Sci. Technol. 17, 1238–1252 (2001)

    Article  Google Scholar 

  36. D.R. Askeland, P.K. Trojan, R. Flinn, AFS Trans. 80, 349–358 (1972)

    Google Scholar 

  37. B. Francis, Metall.l Trans. A, 10A, 1979, 21-31

  38. A. Natxiondo, R. Suárez, J. Sertucha, P. Larrañaga, Metals 5, 239–255 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Diputación Foral de Bizkaia for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Alonso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, G., Larrañaga, P., Stefanescu, D.M. et al. Kinetics of Nucleation and Growth of Graphite at Different Stages of Solidification for Spheroidal Graphite Iron. Inter Metalcast 11, 14–26 (2017). https://doi.org/10.1007/s40962-016-0094-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-016-0094-7

Keywords

Navigation