International Journal of Metalcasting

, Volume 11, Issue 1, pp 14–26 | Cite as

Kinetics of Nucleation and Growth of Graphite at Different Stages of Solidification for Spheroidal Graphite Iron

  • G. Alonso
  • P. Larrañaga
  • D. M. Stefanescu
  • E. De la Fuente
  • A. Natxiondo
  • R. Suarez


The importance of the nucleation and growth phenomena that controls the solidification of castings on the mechanical properties and soundness of cast iron cannot be overemphasized. The graphite nucleation mechanism is directly related to the carbon content of the iron and the inoculation treatment. To further understand these phenomena, interrupted solidification experiments were conducted on spheroidal graphite irons at three different levels of carbon equivalent (4.0, 4.2, 4.4), with and without the addition of a commercial inoculant. A detailed scanning electron microscopy investigation was carried out to analyze and quantify the possible nucleation sites at different solid fractions, as well as the influence of the inoculant in their formation. Thermodynamic software was used to evaluate the probability of formation of the compounds. A detailed discussion on the differences in nucleation of graphite between the beginning and end of solidification is provided.


spheroidal graphite iron nucleation solidification inclusion FEG-SEM field emission gun-scanning electron microscopy 



The authors would like to acknowledge Diputación Foral de Bizkaia for supporting this project.


  1. 1.
    R.J. Warrick, AFS Cast Met. Res. J. 2, 97–108 (1966)Google Scholar
  2. 2.
    H. Nakae, Y. Igarashi, Y. Ono, J. Jap. Foundry Eng. Doc 73, 111–117 (2001)Google Scholar
  3. 3.
    T. Skaland, T. Grong, Met. Trans. 24A(10), 2321–2345 (1993)CrossRefGoogle Scholar
  4. 4.
    M. Chisamera, I. Riposan, S. Stan, T. Skaland. Proceedings of the 64th World Foundry Congress, Paris, France (Paper No. 62) (2000)Google Scholar
  5. 5.
    P.E.A. Van Nieuwland, Metalen, Jaargang VIII, nr.18, 333–335 (2004)Google Scholar
  6. 6.
    S.I. Karsay, Uitgave QIT, 1976 and 1980Google Scholar
  7. 7.
    S.I. Karsay, Ductile Iron I: Production, Quebec Iron &Titanium Corp. (1976)Google Scholar
  8. 8.
    A. Boyles, Ohio: Metals Park (1947)Google Scholar
  9. 9.
    J.T. Eash, AFS Trans. 49, 887–906 (1941)Google Scholar
  10. 10.
    G.A. Feest, G. McHugh, D.O. Morton, I.S. Welch, I.A. Cook, Proceedings of Solidification Technology in the Foundry and Casthouse (1983)Google Scholar
  11. 11.
    S. Steeb, U. Maier, in Georgi Publishing, ed. by B. Lux, I. Minkoff, F. Mollard (St. Saphorin, Switzerland, 1974), pp. 1–11Google Scholar
  12. 12.
    W. Krieger, H. Trenkler, Arch. Eisenhuttenwesen 42, 175 (1971)Google Scholar
  13. 13.
    A.A. Vertman, A.M. Samarin, Dokl. Akad. Nauk SSSR 134, 629 (1960)Google Scholar
  14. 14.
    A.M. Samarin, V.A. Izmailov, Soviet Phys. Dokladi 14, 392 (1969)Google Scholar
  15. 15.
    D.M. Stefanescu, G. Alonso, P. Larrañaga, R. Suarez, Acta mater. 103, 103–114 (2016)Google Scholar
  16. 16.
    B. Lux, Modern Cast. 45, 222–232 (1964)Google Scholar
  17. 17.
    C.H. Wang, H. Fredriksson, 48th International Foundry Congress, Varna, Bulgaria (1981)Google Scholar
  18. 18.
    H. Fredriksson, Mat. Sci. Eng. 65, 137–144 (1984)CrossRefGoogle Scholar
  19. 19.
    M.A. Gadd, G.H.J. Bennett, 3rd International Symposium on the Physical Metallurgy of cast Iron, Stockholm (1984)Google Scholar
  20. 20.
    M.H. Jacobs, T.J. Law, D.A. Melford, M.J. Stowell, Met. Tech. 1, 490–500 (1974)CrossRefGoogle Scholar
  21. 21.
    K.M. Muzumdar, J.F. Wallace, AFS Trans. 81, 412–423 (1973)Google Scholar
  22. 22.
    R.L. Naro, J.F. Wallace, AFS Trans. 78, 229–238 (1970)Google Scholar
  23. 23.
    G.X. Sun, C.R. Loper, AFS Trans. 91, 639–646 (1983)Google Scholar
  24. 24.
    M.J. Lalich, J.R. Hitchings, AFS Trans. 84, 653–664 (1976)Google Scholar
  25. 25.
    T. Kusakawa, S. Okimoto, K. Kobayashi, K. Ide, H. Okita, The Casting Research Laboratory (Waseda University, Tokyo, 1988)Google Scholar
  26. 26.
    R.J. Warrick, AFS Trans. 74, 722–733 (1966)Google Scholar
  27. 27.
    T. Skaland, AFS Trans. 105, 77–88 (2001)Google Scholar
  28. 28.
    Y. Igarashi, S. Okada, Int. J. Cast. Met. Res. 11, 83–88 (1998)CrossRefGoogle Scholar
  29. 29.
    M.H. Jacobs, T.J. Law, D.A. Melford, M.J. Stowell, Met. Tech. 3, 98–108 (1976)CrossRefGoogle Scholar
  30. 30.
    Y. Igarashi, H. Nakae, J. Jap, Foundry Eng. Soc. 74, 30–35 (2002)Google Scholar
  31. 31.
    G. Alonso, D.M. Stefanescu, P. Larrañaga, J. Sertucha, R. Suarez, AFS Trans. 120, 329–335 (2012)Google Scholar
  32. 32.
    L.J. Kozlov, A.P. Vorobyev, Cast Met. 4(1), 7–10 (1991)Google Scholar
  33. 33.
    P.J. Bilek, J.M. Dong, T.K. McCluhan, AFS Trans. 80, 183–188 (1972)Google Scholar
  34. 34.
    G. Alonso, D.M. Stefanescu, P. Larrañaga, E. De la Fuente, R. Suarez, AFS Proceedings, Paper 16-020 (2016)Google Scholar
  35. 35.
    J.K. Soldberg, M.I. Onsoien, Mater. Sci. Technol. 17, 1238–1252 (2001)CrossRefGoogle Scholar
  36. 36.
    D.R. Askeland, P.K. Trojan, R. Flinn, AFS Trans. 80, 349–358 (1972)Google Scholar
  37. 37.
    B. Francis, Metall.l Trans. A, 10A, 1979, 21-31Google Scholar
  38. 38.
    A. Natxiondo, R. Suárez, J. Sertucha, P. Larrañaga, Metals 5, 239–255 (2015)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2016

Authors and Affiliations

  1. 1.R&D of Metallurgical ProcessesIK4-AZTERLANDurangoSpain
  2. 2.University of Alabama and Ohio State UniversityColumbusUSA
  3. 3.Veigalan Estudio 2010 S.L.U.DurangoSpain

Personalised recommendations