Skip to main content
Log in

Expression of candidate genes related to white mold resistance in common beans

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

White mold caused by Sclerotinia sclerotiorum is an important disease that may lead to severe crop losses. The resistance of common bean (Phaseolus vulgaris) to white mold is quantitative and affected by environmental conditions. In this case, QTL identification of higher effect and stable in several populations and environments (Meta-QTL) can be useful in marker-assisted breeding. This study aimed to analyze the expression of candidate genes within Meta-QTL regions in two common bean lines Cornell 605 (resistant) and Beryl (susceptible), inoculated with S. sclerotiorum, at different evaluation times. We did so by conducting a phenotypic analysis of the reaction lines were evaluated at 3, 7 and 11 days after inoculation (DAI), with the aim of verifying the reaction discrepancy between the lines in the test environment, and assessing the the expressions of seven genes (PvPKF, PvF-Box, PvERF1, PvPGIP4, PvPR1, PvPOD and PvMYB) within Meta-QTL intervals were analyzed in the lines, at 0, 24, 48 and 72 h after inoculation (HAI). The phenotypic evaluation showed high susceptibility in Beryl and suggested that most of the interaction between lines and evaluation times occurred due to the rapid development of symptoms in the susceptible line. Based on RT-qPCR results, the genes PvPKF and PvPOD were the most promising to explain partial Cornell 605 resistance conditioning. Differences in the genetic backgrounds of the lines used in this study and the fact that the evaluations were performed in a greenhouse may help to explain why the other candidate genes were not highly expressed in Cornell 605.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abawi G, Grogan R (1979) Epidemiology of diseases caused by Sclerotinia species. Phytopathology 69:899–904

    Article  Google Scholar 

  • Abawi GS, Provvidenti R, Crosier DC, Hunter JE (1978) Inheritance of resistance to white mold disease in Phaseolus coccineus. Journal of Heredity 69:200–202

    Article  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros-Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. Journal of Experimental Botany 60:377–390

    Article  CAS  PubMed  Google Scholar 

  • Ando K, Grumet R, Terpstra K, Kelly JD (2007) Manipulation of plant architecture to enhance crop disease control. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2:1–8

    Article  Google Scholar 

  • Antonio RP, Santos JB, Souza TP, Carneiro FF (2008) Genetic control of the resistance of common beans to white mold using the reaction to oxalic acid. Genetics and Molecular Research 7:733–740

    Article  CAS  PubMed  Google Scholar 

  • Beck M, Heard W, Mbengue M, Robatzek S (2012) The INs and OUTs of pattern recognition receptors at the cell surface this review comes from a themed issue on biotic interactions. Current Opinion in Plant Biology 15:367–374

    Article  CAS  PubMed  Google Scholar 

  • Borges A, Tsai SM, Caldas DGG (2012) Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Reports 31:827–838

    Article  CAS  PubMed  Google Scholar 

  • Borras-Hidalgo O, Caprari C, Hernandez-Estevez I, De Lorenzo G, Cervone F (2012) A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance against Rhizoctonia solani and two oomycetes. Frontiers in Plant Science 3:268

  • Box GEP, Cox DR (1964) An Analysis of Transformations. Journal of the Royal Statistical Society: Series B (Methodological) 26:211–243

    Google Scholar 

  • Box GEP, Cox DR (1985) An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological) 26:463–495

    Google Scholar 

  • Büttow MV, Bonow S (2013) Estudos de Expressão Gênica e Possibilidades de Aplicação no Melhoramento Genético de Pessegueiro [Prunus persica]. Documentos 27

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Carneiro FF, Bosco J, Roberto P, Gonçalves C, Antonio RP, Paula T (2011) Genetics of common bean resistance to white mold. Crop Breeding and Applied Biotechnology 11:165–173

    Article  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance tional modulator of physiological responses in guard cells and open new possibilities to engineering stomatal activity to help plants survive desiccation. Current Biology 15:1196–1200

    Article  CAS  PubMed  Google Scholar 

  • Coyne DP, Steadman JR, Anderson FN (1974) Effect of modified plant architecture of Great Northern dry bean varieties (Phaseolus vulgaris) on white mold severity, and components of yield. Plant Disease Reporter 58:379–382

    CAS  Google Scholar 

  • D’ovidio R, Mattei B, Roberti S, Bellincampi D (2004) Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant–pathogen interactions. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1696:237–244

    Article  CAS  Google Scholar 

  • Dalio RJD, Magalhães DM, Atílio LB Rodrigues CM, Breton MC, Pichi S, Pascholati SF, Machado MA (2014) Efetores nas interações planta-patógenos. Revisão Anual de Patologia de Plantas 22:22–68

  • Dansana PK, Kothari KS, Vij S, Tyagi AK (2014) OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Reports 33:1425–1440

    Article  CAS  PubMed  Google Scholar 

  • De Keyser E, Desmet L, Van Bockstaele E, De Riek J (2013) How to perform RT-qPCR accurately in plant species? A case study on flower colour gene expression in an azalea (Rhododendron simsii hybrids) mapping population. BMC Molecular Biology 14:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delessert C, Kazan K, Wilson IW, Straeten DVD, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. The Plant Journal 43:745–757

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Fatouros G, Gkizi D, Fragkogeorgi GA et al (2017) Biological control of Pythium , Rhizoctonia and Sclerotinia in lettuce: association of the plant protective activity of the bacterium Paenibacillus alvei K165 with the induction of systemic resistance. Plant Pathology 67:418–425

    Article  CAS  Google Scholar 

  • Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Teixeira AR (2007) The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology 8:677–700

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LU, Ribeiro VA, Melo PGS, Junior ML, Costa JGC, Pereira HS, Melo LC, Souza TLPO (2019) Comparison of inoculation methods for selecting common bean genotypes with physiological resistance to white mold. Tropical Plant Pathology 44:65–72

    Article  Google Scholar 

  • Frei M, Tanaka JP, Chen CP, Wissuwa M (2010) Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. Journal of Experimental Botany 61:1405–1417

    Article  CAS  PubMed  Google Scholar 

  • Gamir J, Darwiche R, Van’t Hof P, Choudhary V, Stumpe M, Schneiter R, Mauch F (2017) The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. The Plant Journal 89:502–509

    Article  CAS  PubMed  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative Trait Loci: A Meta-analysis. Genetics 155:463–473

  • Griffiths PD, Sandsted E, Halseth D (2012) Release of Cornell 607-612: common bean breeding lines with resistance to white mold. HortScience 47:952–954

    Article  Google Scholar 

  • Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ (2012) Integrated Metabolo-Proteomic Approach to Decipher the Mechanisms by Which Wheat QTL (Fhb1) Contributes to Resistance against Fusarium graminearum. PLoS ONE 7:e40695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Stotz HU (2007) Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on Jasmonic acid, salicylic acid, and ethylene signaling. Molecular Plant-Microbe Interactions 20:1384–1395

    Article  CAS  PubMed  Google Scholar 

  • Heffer Link V, Johnson KB (2007) White Mold (Sclerotinia). In: The Plant Health Instructor. http://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/WhiteMold.aspx. Accessed 18 Feb 2017

  • Jia F, Wu B, Li H, Huang J, Zheng C (2013) Genome-wide identification and characterisation of F-box family in maize. Molecular Genetics and Genomics 288:559–577

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Molecular Biology 41:577–585

    Article  CAS  PubMed  Google Scholar 

  • Jones DA, Jones JDG (1997) The role of leucine-rich repeat proteins in plant Defences. Advances in Botanical Research 24:89–167

    Article  Google Scholar 

  • Kolkman JM, Kelly JD (2003) QTL conferring resistance and avoidance to white Mold in common bean. Crop Science 43:539–548

    Article  CAS  Google Scholar 

  • Kothari KS, Dansana PK, Giri J, Tyagi AK (2016) Rice Stress Associated Protein 1 (OsSAP1) Interacts with Aminotransferase (OsAMTR1) and Pathogenesis-Related 1a Protein (OsSCP) and Regulates Abiotic Stress Responses. Frontiers in Plant Science 7:1057

    Article  PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Keller B (2016) Molecular genetics and evolution of disease resistance in cereals. New Phytologist 212:320–332

    Article  CAS  PubMed  Google Scholar 

  • Lange J, Xie Z-P, Broughton W, Vögeli-Lange R, Boller T (1999) A gene encoding a receptor-like protein kinase in the roots of common bean is differentially regulated in response to pathogens, symbionts and nodulation factors. Plant Science 142:133–145

    Article  CAS  Google Scholar 

  • Lara LADC, Santos JB, Veloso JS, Balestre M, Alves FC, Leite ME (2014) Identification of QTLs for resistance to Sclerotinia sclerotiorum in carioca common bean by the moving away method. ISRN Molecular Biology 2014:0–10

    Article  Google Scholar 

  • Lehner M, Teixeira H, Paula Júnior TJ, Vieira RF, Lima RC, Carneiro JES (2015) Adaptation and resistance to diseases in Brazil of putative sources of common bean resistance to white Mold. Plant Disease 99:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Leite ME, dos Santos JB, Ribeiro PM, de Souza DA, de Castro Lara LA, de Resende MLV (2014) Biochemical responses associated with common bean defence against Sclerotinia sclerotiorum. European Journal of Plant Pathology 138:391–404

    Article  CAS  Google Scholar 

  • Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S, Millenaar FF, Welschen RAM, Ritsema T, Pieterse CMJ (2009) Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiology 149:1797–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • López CE, Acosta IF, Jara C, Pedraza F, Gaitán-Solís E, Gallego G, Beebe S, Tohme J (2003) Identifying Resistance Gene Analogs Associated With Resistances to Different Pathogens in Common Bean. Phytopathology 93:88–95

    Article  PubMed  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theoretical and Applied Genetics 127:1491–1499

    Article  PubMed  Google Scholar 

  • Maciel SC, Nakano DH, Rezende JAM, Vieira MLC (2009) Screening of Passiflora species for reaction to Cowpea aphid-borne mosaic virus reveals an immune wild species. Scientia Agricola 66:414–418

    Article  CAS  Google Scholar 

  • Markakis EA, Tjamos SE, Antoniou PP, Paplomatas EJ, Tjamos EC (2009) Symptom development, pathogen isolation and Real-Time QPCR quantification as factors for evaluating the resistance of olive cultivars to Verticillium pathotypes. European Journal of Plant Pathology 124:603–611

    Article  CAS  Google Scholar 

  • Meiners JP (1981) Genetics of disease resistance in edible legumes. Annual Review of Phytopathology 19:189–209

    Article  Google Scholar 

  • Miklas PN (2006) Potential marker-assisted selection for resistance to Sclerotinia white mold in pinto and great northern bean. Annual Report-Bean Improvement Cooperative 49:67

    Google Scholar 

  • Miklas PN, Johnson WC, Delorme R, Gepts P (2001) QTL conditioning physiological resistance and avoidance to white mold in dry bean. Crop Science 41:309

    Article  Google Scholar 

  • Miklas PN, Hauf DC, Henson RA, Grafton KF (2004) Inheritance of ICA Bunsi-derived resistance to white mold in a navy × pinto bean cross. Crop Science 44:1584

    Article  Google Scholar 

  • Miklas PN, Porter LD, Kelly JD, Myers JR (2013) Characterization of white mold disease avoidance in common bean. European Journal of Plant Pathology 135:525–543

    Article  Google Scholar 

  • Niu D, Xia J, Jiang C, Qi B, Ling X, Lin S, Zhang W, Guo J, Jin H, Zhao H (2016) Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense-related genes in Arabidopsis. Journal of Integrative Plant Biology 58:426–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira AC, Vallim MA, Semighini CP, Araújo WL, Goldman GH, Machado MA (2002) Quantification of Xylella fastidiosa from Citrus Trees by Real-Time Polymerase Chain Reaction Assay. Phytopathology 92:1048–1054

    Article  PubMed  Google Scholar 

  • Oliveira MB, Nascimento LB, Junior ML, Petrofeza S (2010) Characterization of the dry bean polygalacturonase-inhibiting protein (PGIP) gene family during Sclerotinia sclerotiorum (Sclerotiniaceae) infection. Genetics and Molecular Research Genet Mol Res 9:994–1004

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MB, de Andrade RV, Grossi-de-Sá MF, Petrofeza S (2015a) Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorum-Phaseolus vulgaris interaction. Frontiers in Microbiology 6:1162

    PubMed  PubMed Central  Google Scholar 

  • Oliveira MB, Lobo Junior M, Grossi-De-Sá MF, Petrofeza S (2015b) Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants. Journal of Plant Physiology 182:13–22

    Article  CAS  PubMed  Google Scholar 

  • Pamplona AKA, Balestre M, Lara LAC, Santos JB, Bueno Filho JSS (2015) A new method of QTL identification for undersaturated maps. Genetics and Molecular Research 14:11462–11479

    Article  CAS  PubMed  Google Scholar 

  • Perchepied L, Balagué C, Riou C, Claudel-Renard C, Rivière N, Grezes-Besset B, Roby D (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Molecular Plant-Microbe Interactions 23:846–860

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Vega E, Pascual A, Campa A, Giraldez R, Miklas PN, Ferreira JJ (2012) Mapping quantitative trait loci conferring partial physiological resistance to white mold in the common bean RIL population Xana × Cornell 49242. Molecular Breeding 29:31–41

    Article  CAS  Google Scholar 

  • Petzoldt R, Dickson MH (1996) Straw test for resistance to white mold in beans. Annual Report of the Bean Improvement Cooperative 39:142–143

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29:e45–e445

    Article  Google Scholar 

  • Porto ACM, Gwinner R, Miranda RN, Lopes FS, Pereira WA, Pasqual M, Santos JB (2019) Choice of improved phenotyping methods for bean plant reactions to white mold by non-linear model adjustments of symptom progression. Australasian Plant Pathology 48:257–266

    Article  Google Scholar 

  • Raffaele S, Vailleau F, Lé A, Rô Me Joubè J, Miersch O, Huard C, Blé E, Bastien Mongrand S, Dé F, Domergue R, Roby D (2008) A MYB Transcription Factor Regulates Very-Long-Chain Fatty Acid Biosynthesis for Activation of the Hypersensitive Cell Death Response in Arabidopsis. The Plant Cell 20:752–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz HF, Singh SP (2013) Breeding common bean for resistance to white Mold: a review. Crop Science 53:1832

    Article  Google Scholar 

  • Silva PH, Santos JB, Lima IA, Lara LAC, Alves FC (2014) Reaction of common bean lines and aggressiveness of Sclerotinia sclerotiorum isolates. Genetics and Molecular Research 13:9138–9151

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Schwartz HF, Viteri D, Terán H, Otto K (2014) Introgressing white mold Resistance from PI 439534 to common pinto bean. Crop Science 54:1026

    Article  Google Scholar 

  • Song W-Y, Wang G-L, Chen L-L, Kim H-S (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Soule M, Porter L, Medina J, Santana GP, Blair MW, Miklas PN (2011) Comparative QTL map for white Mold resistance in common bean, and characterization of partial resistance in dry bean lines VA19 and I9365-31. Crop Science 51:123

    Article  Google Scholar 

  • Souza DA, Balestre M, Pamplona AKA, Leite ME, Dias JA, Santos JB (2016) White mold resistance-associated quantitative trait loci in the Jalo x small white common bean population. Genetics and Molecular Research 15:1124–1135

  • Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR—publishing data that conform to the MIQE guidelines. Methods 50:S1–S5

    Article  CAS  PubMed  Google Scholar 

  • Terán H, Singh SP (2009) Gamete selection for improving physiological resistance to white mold in common bean. Euphytica 167:271–280

    Article  Google Scholar 

  • Terán H, Lema M, Schwartz HF, Duncan R, Gilbei1son R, Singh SP, Singh SP (2006) Modified petzoldt and dickson mold rating of common bean. Annual Report of the Bean Improvement Cooperative 49:115–116

  • Tu JC, Beversdorf WD (1982) Tolerance to white mold (Sclerotinia sclerotiorum (lib.) de bary) in ex Rico 23, a cultivar of white bean (Phaseolus vulgaris L.). Canadian Journal of Plant Science 62:65–69

    Article  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology 55:85–97

    Article  Google Scholar 

  • Vasconcellos R, Lima T, Fernandes-Brum C, Chalfun-Junior A, Santos J (2016) Expression and validation of PvPGIP genes for resistance to white mold (Sclerotinia sclerotiorum) in common beans (Phaseolus vulgaris L.). Genetics and Molecular Research 15:11

  • Vasconcellos RCC, Oraguzie OB, Soler A, Arkwazee H, Myers JR, Ferreira JJ, Song Q, McClean P, Miklas PN (2017) Meta-QTL for resistance to white mold in common bean. PLoS One 12:e0171685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viteri DM, Otto K, Terán H, Schwartz HF, Singh SP (2015) Use of four Sclerotinia sclerotiorum isolates of different aggressiveness, three inoculations per plant, and delayed multiple evaluations to select common beans with high levels of white mold resistance. Euphytica 204:457–472

    Article  CAS  Google Scholar 

  • Wang F, Deng XW (2011) Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Research 21:1286–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willbur J, McCaghey M, Kabbage M, Smith DL (2019) An overview of the Sclerotinia sclerotiorum pathosystem in soybean: impact, fungal biology, and current management strategies. Tropical Plant Pathology 44:3–11

    Article  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant cell 15:745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Wang J, An L, Doerge RW, Chen ZJ, Grau CR, Meng J, Osborn TC (2007) Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta 227:13–24

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Buchwaldt L, Rimmer SR, Sharpe A, Mcgregor L, Bekkaoui D, Hegedus D (2009) Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum. Molecular Plant Pathology 10:635–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) in Brazil and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support in the development of this research.

Author information

Authors and Affiliations

Authors

Contributions

AP, CC, WP, ML and JB planed, designed and executed experimental work, AP, CC, RV and EN conducted data analyses, AP, CC, RV, EN, AC, WP and JB and wrote the manuscript.

Corresponding author

Correspondence to Antonio C. M. Porto.

Additional information

Section Editor: Trazilbo J. de Paula Junior

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porto, A.C.M., Cardon, C.H., Vasconcellos, R.C.C. et al. Expression of candidate genes related to white mold resistance in common beans. Trop. plant pathol. 44, 483–493 (2019). https://doi.org/10.1007/s40858-019-00312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-019-00312-0

Keywords

Navigation