Advertisement

Science China Materials

, Volume 62, Issue 1, pp 122–129 | Cite as

Self-assembled energetic coordination polymers based on multidentate pentazole cyclo-N5

  • Peng-Cheng Wang (王鹏程)
  • Yuan-Gang Xu (许元刚)
  • Qian Wang (王乾)
  • Yan-Li Shao (邵艳丽)
  • Qiu-Han Lin (林秋汉)
  • Ming Lu (陆明)
Articles

Abstract

Coordination to form polymer is emerging as a new technology for modifying or enhancing the properties of the existed energetic substances in energetic materials area. In this work, guanidine cation CN3H6+ (Gu) and 3-amino-1,2,4- triazole C2H4N4 (ATz) were crystallized into NaN5 and two novel energetic coordination polymers (CPs), (NaN5)5[(CH6- N3)N5](N5)3 (1) and (NaN5)2(C2H4N4) (2) were prepared respectively via a self-assembly process. The crystal structure reveals the co-existence of the chelating pentazole anion and organic component in the solid state. In polymer 1, Na+ and N5 were coordinated to form a cage structure in which guanidine cation [C(NH2)3]+ was trapped; for polymer 2, a mixedligand system was observed; N5 and ATz coordinate separately with Na+ and form two independent but interweaved nets. In this way, coordination polymer has been successfully utilized to modify specific properties of energetic materials through crystallization. Benefiting from the coordination and weak interactions, the decomposition temperatures of both polymers increase from 111°C (1D structure [Na(H2O)(N5)] ∙2H2O) to 118.4 and 126.5°C respectively. Moreover, no crystallized H2O was generated in products to afford the anhydrous compounds of pentazole salts with high heats of formation (>800 kJ mol–1). Compared to traditional energetic materials, the advantage in heats of formation is still obvious for the cyclo-N5 based CPs, which highlights cyclo-N5 as a promising energetic precursor for high energy density materials (HEDMs).

Keywords

pentazole energetic coordination polymers self-assembled stability high heats of formation 

多齿五唑N5的自组装纳米含能配位聚合物

摘要

在含能材料领域, 通过协同作用形成聚合物已成为改善或增强现有含能物质性能的一种新技术. 本文将胍阳离子CH3H6+(GU)和氨基-1,2,4-三唑C2H4N4(ATZ)与NaN5一起结晶, 通过自组装过程分别制备了两种新型含能配位聚合物(CPs), (NaN5)5[(CH3H6)N5](N5)3 (1)和(NaN5)2(C2H4N4) (2). 晶体结构表明, 在固体状态下, 螯合的五唑阴离子实现了与其他有机成分共存. 聚合物1, Na+和N5−形成笼状, 并将胍阳离子[C(NH2)3]+围在里面; 而聚合物2是一个混合配体体系, N5和ATZ与Na+分别形成两个独立但相互交织的网. 这些都说明了通过结晶形成配位聚合物, 来改变含能材料的特定性能是可行的. 受益于配位和弱相互作用, 两种聚合物的热分解温度分别从111°C (一维结构[Na(H2O)(N5)]·2H2O)提高到了118.4和126.5°C. 此外, 他们成功地除去了产物中的结晶水, 成为具有高生成热特点的五唑无水盐(> 800 kJ mol−1). 聚合物12比传统能量材料高得多的生成热, 表明N5作为高能量密度材料(HEDMs)的前驱体, 具有很好的前景.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11702141, 21771108, and U1530101). The authors gratefully acknowledge Dongxue Li (College of Chemical Engineering, Nanjing Tech University) for her tests of the Raman spectra.

Supplementary material

40843_2018_9268_MOESM1_ESM.pdf (2 mb)
Self-assembled Energetic Coordination Polymers based on Multidentate Pentazole cyclo-N5

References

  1. 1.
    Christe KO. Polynitrogen chemistry enters the ring. Science, 2017, 355: 351–351CrossRefGoogle Scholar
  2. 2.
    Klapötke TM. Chemistry of High-Energy Materials. Boston: De Gruyter, 2017CrossRefGoogle Scholar
  3. 3.
    Yin P, Shreeve JM. Advances in heterocyclic chemistry. London: Elsevier, 2017, 121: 89–131Google Scholar
  4. 4.
    Zhang Q, Shreeve J’M. Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem Rev, 2014, 114: 10527–10574CrossRefGoogle Scholar
  5. 5.
    Singh RP, Gao H, Meshri DT, Shreeve JM. High Energy Density Materials. Berlin: Springer, 2007, 35–83CrossRefGoogle Scholar
  6. 6.
    Chen SL, Yang ZR, Wang BJ, et al. Molecular perovskite highenergetic materials. Sci China Mater, 2018, doi: 10.1007/s40843-017-9219-9Google Scholar
  7. 7.
    Gao H, Shreeve J’M. Azole-based energetic salts. Chem Rev, 2011, 111: 7377–7436CrossRefGoogle Scholar
  8. 8.
    Fischer N, Fischer D, Klapötke TM, et al. Pushing the limits of energetic materials—the synthesis and characterization of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate. J Mater Chem, 2012, 22: 20418–20422CrossRefGoogle Scholar
  9. 9.
    Zhang S, Yang Q, Liu X, et al. High-energy metal–organic frameworks (HE-MOFs): Synthesis, structure and energetic performance. Coord Chem Rev, 2016, 307: 292–312CrossRefGoogle Scholar
  10. 10.
    Li S, Wang Y, Qi C, et al. 3D energetic metal-organic frameworks: synthesis and properties of high energy materials. Angew Chem Int Ed, 2013, 52: 14031–14035CrossRefGoogle Scholar
  11. 11.
    McDonald KA, Seth S, Matzger AJ. Coordination polymers with high energy density: an emerging class of explosives. Cryst Growth Des, 2015, 15: 5963–5972CrossRefGoogle Scholar
  12. 12.
    Zhang J, Shreeve JM. Time for pairing: cocrystals as advanced energetic materials. CrystEngComm, 2016, 18: 6124–6133CrossRefGoogle Scholar
  13. 13.
    Landenberger KB, Bolton O, Matzger AJ. Energetic–energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent sensitivity modifications via cocrystallization. J Am Chem Soc, 2015, 137: 5074–5079CrossRefGoogle Scholar
  14. 14.
    Haiges R, Boatz JA, Vij A, et al. Polyazide chemistry: preparation and characterization of Te(N3)4 and [P(C6H5)4]2[Te(N3)6] and evidence for [N(CH3)4][Te(N3)5]. Angew Chem Int Ed, 2003, 42: 5847–5851CrossRefGoogle Scholar
  15. 15.
    Fehlhammer WP, Beck W. Azide chemistry—an inorganic perspective, part I metal-azides: overview, general trends and recent developments. Z Anorg Allg Chem, 2013, 639: 1053–1082CrossRefGoogle Scholar
  16. 16.
    Christe KO, Wilson WW, Sheehy JA, et al. N5 +: a novel homoleptic polynitrogen ion as a high energy density material. Angew Chem Int Ed, 1999, 38: 2004–2009CrossRefGoogle Scholar
  17. 17.
    Haiges R, Schneider S, Schroer T, et al. High-energy-density materials: synthesis and characterization of N5 +[P(N3)6]-, N5 +[B(N3)4]-, N5 +[HF2]-·nHF, N5 +[BF4]-, N5 +[PF6]-, and N5 +[SO3F]-. Angew Chem Int Ed, 2004, 43: 4919–4924CrossRefGoogle Scholar
  18. 18.
    Vij A, Pavlovich JG, Wilson WW, et al. Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5 -. Angew Chem Int Ed, 2002, 41: 3051–3054CrossRefGoogle Scholar
  19. 19.
    Östmark H, Wallin S, Brinck T, et al. Detection of pentazolate anion (cyclo-N5 -) from laser ionization and decomposition of solid p-dimethylaminophenylpentazole. Chem Phys Lett, 2003, 379: 539–546CrossRefGoogle Scholar
  20. 20.
    Steele BA, Oleynik II. Sodium pentazolate: A nitrogen rich high energy density material. Chem Phys Lett, 2016, 643: 21–26CrossRefGoogle Scholar
  21. 21.
    Bazanov B, Geiger U, Carmieli R, et al. Detection of cyclo-N5 -in THF solution. Angew Chem Int Ed, 2016, 55: 13233–13235CrossRefGoogle Scholar
  22. 22.
    Steele BA, Stavrou E, Crowhurst JC, et al. High-pressure synthesis of a pentazolate salt. Chem Mater, 2017, 29: 735–741CrossRefGoogle Scholar
  23. 23.
    Zhang C, Sun C, Hu B, et al. Synthesis and characterization of the pentazolate anioncyclo–N5 -in (N5)6(H3O)3(NH4)4Cl. Science, 2017, 355: 374–376CrossRefGoogle Scholar
  24. 24.
    Xu Y, Wang Q, Shen C, et al. A series of energetic metal pentazolate hydrates. Nature, 2017, 549: 78–81CrossRefGoogle Scholar
  25. 25.
    Zhang C, Yang C, Hu B, et al. A symmetric Co(N5)2(H2O)4·4H2O high-nitrogen compound formed by cobalt(II) cation trapping of a cyclo-N5 -anion. Angew Chem Int Ed, 2017, 56: 4512–4514CrossRefGoogle Scholar
  26. 26.
    Xu Y, Wang P, Lin Q, et al. A carbon-free inorganic–metal complex consisting of an all-nitrogen pentazole anion, a Zn(ii) cation and H2O. Dalton Trans, 2017, 46: 14088–14093CrossRefGoogle Scholar
  27. 27.
    Zhang W, Wang K, Li J, et al. Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages. Angew Chem Int Ed, 2018, 57: 2592–2595CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A.02, Gaussian, Inc, Wallingford CT, 2009Google Scholar
  29. 29.
    Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652Google Scholar
  30. 30.
    Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789CrossRefGoogle Scholar
  31. 31.
    Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem, 2012, 33: 580–592CrossRefGoogle Scholar
  32. 32.
    Johnson ER, Keinan S, Mori-Sanchez P, et al. Revealing noncovalent interactions. J Am Chem Soc, 2010, 132: 6498–6506CrossRefGoogle Scholar
  33. 33.
    SAINT v7.68A Bruker AXS Inc: Madison, WI, 2009Google Scholar
  34. 34.
    Sheldrick GM. SHELXL-2014/7, University of Göttingen, Germany, 2014Google Scholar
  35. 35.
    SADABS v2008/1 Bruker AXS Inc.: Madison, WI, 2008Google Scholar
  36. 36.
    Spek AL. PLATON, An integrated tool for the analysis of the results of a single crystal structure determination. Acta Crystallogr sect A, 1990, 46: C34Google Scholar
  37. 37.
    Kamlet MJ, Jacobs SJ. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys, 1968, 48: 23–35Google Scholar
  38. 38.
    Zhang Y, Zhang S, Sun L, et al. A solvent-free dense energetic metal–organic framework (EMOF): to improve stability and energetic performance via in situ microcalorimetry. Chem Commun, 2017, 53: 3034–3037CrossRefGoogle Scholar
  39. 39.
    Xu Y, Liu W, Li D, et al. In situ synthesized 3D metal–organic frameworks (MOFs) constructed from transition metal cations and tetrazole derivatives: a family of insensitive energetic materials. Dalton Trans, 2017, 46: 11046–11052CrossRefGoogle Scholar
  40. 40.
    Wang Y, Zhang J, Su H, et al. A simple method for the prediction of the detonation performances of metal-containing explosives. J Phys Chem A, 2014, 118: 4575–4581CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Peng-Cheng Wang (王鹏程)
    • 1
  • Yuan-Gang Xu (许元刚)
    • 1
  • Qian Wang (王乾)
    • 1
  • Yan-Li Shao (邵艳丽)
    • 1
  • Qiu-Han Lin (林秋汉)
    • 1
  • Ming Lu (陆明)
    • 1
  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations