Advertisement

A CFD investigation of a variable-pitch vertical axis hydrokinetic turbine with incorporated flow acceleration

  • Brian MannionEmail author
  • Vincent McCormack
  • Seán B. Leen
  • Stephen NashEmail author
Research Article

Abstract

This paper presents the numerical modelling of a novel vertical axis tidal turbine that incorporates localised flow acceleration and variable-pitch blades. The focus is to develop a computational fluid dynamics model of a 1:20 scale model of the device using ANSYS® Fluent®. A nested sliding mesh technique is presented, using an outer sliding mesh to model the turbine and additional inner sliding meshes used for each of the six blades. The turbine sliding mesh is embedded in an outer static domain which includes the flow accelerating bluff body. Modelled power performance and velocity data are compared with experimental results obtained from scale model tests in a recirculating flume. The predicted power curves show general agreement with the measured data; the relative difference in maximum performance coefficient for example, is just 5.7%. The model also accurately reproduces measured flows downstream of the turbine. The verified and experimentally validated model is subsequently used to investigate the effects of the variable-pitching and number of blades on device performance.

Keywords

Novel vertical axis tidal turbine Performance prediction Flow acceleration Sliding mesh Blade pitch control Computational fluid dynamics 

Notes

Acknowledgements

The authors wish to acknowledge the DJEI/DES/SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support. The authors also wish to acknowledge the contribution of Dr. Ciaran Kennedy to the experimental testing of the device.

Funding

This material is based on works supported by Science Foundation Ireland under Grant No. 12/RC/2302 through MaREI, the national centre for Marine and Renewable Energy Ireland.

References

  1. ANSYS Fluent 17.1 theory guide (2016) ANSYS Fluent 17.1 theory guide. Ansys Inc.  https://doi.org/10.1016/0140-3664(87)90311-2
  2. Almohammadi KM, Ingham DB, Ma L, Pourkashanian M (2012) CFD sensitivity analysis of a straight-blade vertical axis wind turbine. Wind Eng 36:571–588.  https://doi.org/10.1260/0309-524X.36.5.571 CrossRefGoogle Scholar
  3. Almohammadi KM, Ingham DB, Ma L, Pourkashan M (2013) Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 58:483–493.  https://doi.org/10.1016/j.energy.2013.06.012 CrossRefGoogle Scholar
  4. Bachant P, Wosnik M (2016) Modeling the near-wake of a vertical-axis cross-flow turbine with 2-D and 3-D RANS. J Renew Sustain Energy.  https://doi.org/10.1063/1.4966161 Google Scholar
  5. Balduzzi F, Bianchini A, Maleci R, Ferrara G, Ferrari L (2016) Critical issues in the CFD simulation of Darrieus wind turbines. Renew Energy 85:419–435.  https://doi.org/10.1016/j.renene.2015.06.048 CrossRefGoogle Scholar
  6. Bianchini A, Balduzzi F, Bachant P, Ferrara G, Ferrari L (2017) Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment. Energy Convers Manag 136:318–328.  https://doi.org/10.1016/j.enconman.2017.01.026 CrossRefGoogle Scholar
  7. Castelli MR, Ardizzon G, Battisti L, Benini E, Pavesi G (2010) Modeling strategy and numerical validation for a Darrieus vertical axis micro-wind turbine. In: Proc. ASME 2010 Int. Mech. Eng. Congr. Expo. IMECE2010, pp 1–10Google Scholar
  8. Chatterjee P, Laoulache RN (2013) Performance modeling of ducted vertical axis turbine using computational fluid dynamics. Mar Technol Soc J 47:36–44.  https://doi.org/10.4031/MTSJ.47.4.12 CrossRefGoogle Scholar
  9. Ghasemian M, Nejat A (2015) Aero-acoustics prediction of a vertical axis wind turbine using large Eddy simulation and acoustic analogy. Energy 88:711–717.  https://doi.org/10.1016/j.energy.2015.05.098 CrossRefGoogle Scholar
  10. Glauert H (1926) A general theory of the Autogyro. Sci. Res. Air Minist. - Reports Memo. No. 1111 41Google Scholar
  11. Gupta S, Leishman JG (2005) Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines. In: 43rd AIAA Aerosp. Sci. Meet. Exhib. AIAA, pp 1–24.  https://doi.org/10.2514/6.2005-594
  12. Klimas PC, Sheldahl RE (1978) Four aerodynamic prediction schemes for vertical-axis: a compendium SAND78-0014Google Scholar
  13. Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81:021011.  https://doi.org/10.1115/1.4024415 CrossRefGoogle Scholar
  14. Lain S, Osorio C (2010) Simulation and evaluation of a straight-bladed darrieus-type cross flow marine turbine. J Sci Ind Res 69:906–912Google Scholar
  15. Lam HF, Peng HY (2016) Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations. Renew Energy 90:386–398.  https://doi.org/10.1016/j.renene.2016.01.011 CrossRefGoogle Scholar
  16. Langtry RB, Menter FR (2009) Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J 47:2894–2906.  https://doi.org/10.2514/1.42362 CrossRefGoogle Scholar
  17. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289.  https://doi.org/10.1016/0045-7825(74)90029-2 CrossRefzbMATHGoogle Scholar
  18. Lee NJ, Kim IC, Kim CG, Hyun BS, Lee YH (2015) Performance study on a counter-rotating tidal current turbine by CFD and model experimentation. Renew Energy 79:122–126.  https://doi.org/10.1016/j.renene.2014.11.022 CrossRefGoogle Scholar
  19. Maître T, Amet E, Pellone C (2013) Modeling of the flow in a Darrieus water turbine: wall grid refinement analysis and comparison with experiments. Renew Energy 51:497–512.  https://doi.org/10.1016/j.renene.2012.09.030 CrossRefGoogle Scholar
  20. Mannion B, Leen SB, Nash S (2018a) A two and three-dimensional CFD investigation into performance prediction and wake characterisation of a vertical axis turbine. J Renew Sustain Energy 10:34503.  https://doi.org/10.1063/1.5017827 CrossRefGoogle Scholar
  21. Mannion B, McCormack V, Kennedy C, Leen SB, Nash S (2018b) An experimental study of a flow-accelerating hydrokinetic device. Proc Inst Mech Eng Part A J Power Energy.  https://doi.org/10.1177/0957650918772626 Google Scholar
  22. Masters I, Williams A, Croft TN, Togneri M, Edmunds M, Zangiabadi E, Fairley I, Karunarathna H (2015) A comparison of numerical modelling techniques for tidal stream turbine analysis. Energies 8:7833–7853.  https://doi.org/10.3390/en8087833 CrossRefGoogle Scholar
  23. Menter FR (1994) 2-Equation eddy-visocity turbulence models for engineering applications. AIAA J 32:1598–1605.  https://doi.org/10.2514/3.12149 CrossRefGoogle Scholar
  24. Menter FR, Langtry RB, Likki SR, Suzen YB, Huang PG, Volker S (2006) A correlation-based transition model using local variables—part I: model formulation. J Turbomach 128:413.  https://doi.org/10.1115/1.2184352 CrossRefGoogle Scholar
  25. Mohamed MH (2012) Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy 47:522–530.  https://doi.org/10.1016/j.energy.2012.08.044 CrossRefGoogle Scholar
  26. Paraschivoiu I, Delclaux F, Fraunié P, Béguier C (1983) Aerodynamic analysis of the Darrieus wind turbines including secondary effects. J. Energy 7:416–422CrossRefGoogle Scholar
  27. Ponta FL, Jacovkis PM (2001) A vortex model for Darrieus turbine using finite element techniques. Renew Energy 24:1–18.  https://doi.org/10.1016/S0960-1481(00)00190-7 CrossRefGoogle Scholar
  28. Rossetti A, Pavesi G (2013) Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up. Renew Energy 50:7–19.  https://doi.org/10.1016/j.renene.2012.06.025 CrossRefGoogle Scholar
  29. Sheldahl RE, Klimas PC (1981) Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Technical Report SAND80-2114, Sandia National Laboratories. Tech. SAND80-2114, Sandia Natl. Lab.  https://doi.org/10.2172/6548367
  30. Spalart PR, Allmaras SR, Reno J (1992) A one-equatlon turbulence model for aerodynamic flows boeing commercial airplane group 30th aerospace sciences. AIAA Pap. doi: https://doi.org/10.2514/6.1992-439
  31. Strickland J (1975) The darrieus turbine, a performance prediction method using multiple stream tubes. Sandia Lab., SAND, Albuquerque (SAND75-0431) Google Scholar
  32. Strickland JH, Webster BT, Nguyen T (1979) A vortex model of the darrieus turbine: an analytical and experimental study. J Fluids Eng 101:500.  https://doi.org/10.1115/1.3449018 CrossRefGoogle Scholar
  33. Templin RJ (1974) Aerodynamic performance theory for the NRC vertical-axis wind turbine. NASA STI Recon Tech Rep N 7616618(76):16618Google Scholar
  34. Trivellato F, Raciti Castelli M (2014) On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis. Renew Energy 62:53–62.  https://doi.org/10.1016/j.renene.2013.06.022 CrossRefGoogle Scholar
  35. Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26:1299–1310.  https://doi.org/10.2514/3.10041 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Engineering & InformaticsNational University of Ireland GalwayGalwayIreland
  2. 2.Centre for Marine and Renewable Energy Ireland (MaREI)NUI GalwayGalwayIreland
  3. 3.GKinetic Energy LTDLimerickIreland

Personalised recommendations