Skip to main content

Advertisement

Log in

Numerical Investigation of a Vertical Axis Tidal Turbine with Deforming Blades

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The vertical axis tidal turbines are initially constructed by using simple rigid blades. As an alternative to the conventional rigid blades, the proposition of the present work is to deform the blade leading edge via a sinusoidal smoothed curve. A deforming mesh involving both sliding and remeshing techniques is used to control and update the mesh throughout the system motion. Examinations of the shed vortices interactions and the accompanying pressure contours indicate that the correction of the leading edge shape gives rise to a vortex with large size at an advanced stage than the conventional blade. This vortex promotes in turn, the blades suction zone which alters the pressure distribution along the blade’s surfaces. The turbine efficiency is boosted by 35% relative to the uncontrolled case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Rotor swept area

\({a}_{0}\) :

Oscillating amplitude (m)

C :

Blade chord (m)

\(C_D\) :

Drag coefficient

\(C_\mathrm{L} \) :

Lift coefficient

\(C_\mathrm{m} \) :

Moment coefficient

\(C_\mathrm{P}\) :

Power coefficient

\(C_\mathrm{ip}\) :

Input power coefficient

\(C_\mathrm{p} \) :

Pressure coefficient

D :

Turbine diameter (m)

\(f^{*}\) :

Flapping frequency (Hz)

f :

Rotation frequency (Hz)

\(h\left( x \right) \) :

Instantaneous airfoil position along the x axis

\(h\left( y \right) \) :

Instantaneous airfoil position along the y axis

t :

Instant time (s)

T :

Turbine revolution

L :

Lift force (N)

M :

Moment (N m)

P :

Power (W)

R :

Turbine radius (m)

U :

Incoming flow velocity (m/s)

LEV:

Leading edge vortex

zi :

Flapping frequency controlled parameter relative to turbine diameter

\(\eta \) :

Efficiency

\(\mu \) :

Dynamic viscosity

\(\rho \) :

Density

\(\lambda \) :

Tip speed ratio

\(\theta \) :

Turbine azimuthal angle (\(^{\circ })\)

References

  1. Visbal, M.R.; Gordnier, R.E.; Galbraith, M.C.: High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers. Exp. Fluids 46, 903–922 (2009)

    Article  Google Scholar 

  2. Gopalakrishnan, P.; Tafti, D.K.: Effect of wing flexibility on lift and thrust production in flapping flight. AIAA J. 48(5), 865–877 (2010)

    Article  Google Scholar 

  3. Liu, W.; Xiao, Q.; Cheng, F.: A bio-inspired study on tidal energy extraction with flexible flapping wings. Bioinspir. Biomim. (2013). doi:10.1088/1748-3182/8/3/036011

  4. Hoke, C.M.; Young, J.; Lai, J.C.S.: Effects of time-varying camber deformation on flapping foil propulsion and power extraction. J. Fluids Struct. 56, 152–176 (2015)

    Article  Google Scholar 

  5. Bernitsas, M.M.; Raghavan, K.; Ben-Simon, Y.; Garcia, E.M.: Vivace (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow. J. Offshore Mech. Arct. Eng. 130(4), 041101 (2008)

    Article  Google Scholar 

  6. Xialing, U.; David, P.: Loads and propulsive efficiency of a flexible airfoil performing sinusoidal deformations. J. Fluids Struct. 45, 15–27 (2014)

    Article  Google Scholar 

  7. Naveed, D.; Ning, Q.: Numerical simulation of flexible flapping airfoil propulsion using dynamic mesh at low Reynolds numbers. In: AIAA 2008-654, 46th AIAA Aerospace Sciences Meeting and Exhibit 7–10 Jan 2008, Reno, Nevada (2008)

  8. James, M.A.; Azar, E.P.; James, H.J.B.: Vortex dynamics and performance of flexible and rigid plunging airfoils. J. Fluids Struct. (2014). doi:10.1016/j.jfluidstructs.2014.10.013

  9. Ramananarivo, S.; Godoy-Diana, R.; Thiria, B.: Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl. Acad. Sci. USA 108(15), 5964–5969 (2011)

    Article  Google Scholar 

  10. Bouzaher, M.T.; Hadid, M.; Derfouf, S.E: Flow control for the vertical axis wind turbine by means of Flapping Flexible foils. J. Braz. Soc. Mech. Sci. Eng. (2016). doi:10.1007/s40430-016-0618-3

  11. Liu, W.; Xiao, Q.: Investigation on Darrieus type straight blade vertical axis wind turbine with flexible blade. Ocean Eng. 110, 339–356 (2015)

    Article  Google Scholar 

  12. Bouzaher, M.T.; Guerira, B.; Hadid, M.: Performance analysis of a vertical axis tidal turbine with flexible blades. J. Mar. Sci. Appl. 16, 73–80 (2017). doi:10.1007/s11804-017-1391-0(2017)

    Article  Google Scholar 

  13. Ferreira, C.J.S.; Bijl, H.; Van-Bussel, G.; van Kuik, G.: Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. J. Phys. Conf. Ser. 75, 012023 (2007). doi:10.1088/1742-6596/75/1/012023

    Article  Google Scholar 

  14. Shih, T.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J.: A new \(k-\varepsilon \) eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids 24(3), 227–38 (1995)

    Article  MATH  Google Scholar 

  15. Statkus, F.D.: Continuous skin, variable camber airfoil edge actuating mechanism, US Patent No. 4,351,502 (1982)

  16. Campanile, L.F: Modal synthesis of flexible mechanisms for airfoil shape control. J. Intell. Mater. Syst. Struct. (2004). doi:10.1177/1045389X07080638

  17. Maître, T.; Amet, E.C.; Pellone, C.: Modeling of the flow in a Darrieus water turbine: wall grid refinement analysis and comparison with experiments. Renew. Energy 51, 497–512 (2013)

    Article  Google Scholar 

  18. Nabavi, Y.: Numerical study of the duct shape effect on the performance of a ducted vertical axis tidal turbine. PhD thesis. University of British Columbia Vancouver, Canada (2008)

  19. Amet, E.; Maître, T.; Pellone, C.; Achard, J.L.: 2D numerical simulations of blade–vortex interaction in a Darrieus turbine. J. Fluids Eng. (2009). doi:10.1115/1.4000258

  20. Miao, J.M.; Ho, M.H.: Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil. J. Fluids Struct. 22, 401–419 (2006)

    Article  Google Scholar 

  21. Castelli, M.R.; Englaro, A.; Benini, E.: The Darrieus tidal turbine: proposal for a new performance prediction model based on CFD. Energy 36(6), 4919–34 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Taher Bouzaher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzaher, M.T., Hadid, M. Numerical Investigation of a Vertical Axis Tidal Turbine with Deforming Blades. Arab J Sci Eng 42, 2167–2178 (2017). https://doi.org/10.1007/s13369-017-2511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2511-5

Keywords

Navigation