Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Enhanced Directional Adhesion Behavior of Mushroom-Shaped Microline Arrays

  • 311 Accesses

Abstract

We report directional switchable adhesion behavior inspired by the locomotion mechanism of gecko lizard. The robust mushroom-like polydimethylsiloxane microline arrays are fabricated by using silicon based over-etching process and replica molding. The line gecko patterns attached to the glass substrate exhibit strong shear adhesion forces in parallel and perpendicular directions with respect to the line direction and high adhesion hysteresis property only in the parallel direction. We have explained the directional adhesion behavior of the line gecko pattern by comparing peeling propagation and normal adhesion phenomenon. Then, we have successfully demonstrated silicon wafer transportation with the line gecko pattern by using directional adhesion behavior of the pattern, which is high shear adhesion force and low peeling force in the parallel direction with respect to the line direction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

MEMS:

Microelectromechanical systems

SOI:

Silicon on insulator

PDMS:

Polydimethylsiloxane

SEM:

Scanning electron microscopy

References

  1. 1.

    Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., et al. (2000). Adhesive force of a single gecko foot-hair. Nature,405(6787), 681–685. https://doi.org/10.1038/35015073.

  2. 2.

    Jeong, H. E., Lee, J. K., Kim, H. N., Moon, S. H., & Suh, K. Y. (2009). A nontransferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences of the United States of America,106(14), 5639–5644. https://doi.org/10.1073/pnas.0900323106.

  3. 3.

    Arzt, E., Gorb, S., & Spolenak, R. (2003). From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences of the United States of America,100(19), 10603–10606. https://doi.org/10.1073/pnas.1534701100.

  4. 4.

    Murphy, M. P., Aksak, B., & Sitti, M. (2009). Gecko-inspired directional and controllable adhesion. Small (Weinheim an der Bergstrasse, Germany),5(2), 170–175. https://doi.org/10.1002/smll.200801161.

  5. 5.

    Afferrante, L., & Carbone, G. (2012). Biomimetic surfaces with controlled direction-dependent adhesion. Journal of the Royal Society, Interface,9(77), 3359–3365. https://doi.org/10.1098/rsif.2012.0452.

  6. 6.

    Heepe, L., & Gorb, S. N. (2014). Biologically inspired mushroom-shaped adhesive microstructures. Annual Review of Materials Research,44, 173–203.

  7. 7.

    Kwak, M. K., Kim, T. I., Kim, P., Lee, H. H., & Suh, K. Y. (2009). Large-area dual-scale metal transfer by adhesive force. Small (Weinheim an der Bergstrasse, Germany),5(8), 928–932. https://doi.org/10.1002/smll.200801262.

  8. 8.

    Kang, S. M., Kim, S. M., Kim, H. N., Kwak, M. K., Tahk, D. H., & Suh, K. Y. (2012). Robust superomniphobic surfaces with mushroom-like micropillar arrays. Soft Matter,8(33), 8563–8568.

  9. 9.

    Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Santos, D., & Cutkosky, M. R. (2008). Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics,24(1), 65–74.

  10. 10.

    Yoon, H., Jeong, H. E., Kim, T.-I., Kang, T. J., Tahk, D., Char, K., et al. (2009). Adhesion hysteresis of Janus nanopillars fabricated by nanomolding and oblique metal deposition. Nano Today,4(5), 385–392.

  11. 11.

    Gorb, S. N., Sinha, M., Peressadko, A., Daltorio, K. A., & Quinn, R. D. (2007). Insects did it first: A micropatterned adhesive tape for robotic applications. Bioinspiration & Biomimetics,2(4), S117.

  12. 12.

    Tao, D., Gao, X., Lu, H., Liu, Z., Li, Y., Tong, H., et al. (2017). Controllable anisotropic dry adhesion in vacuum: Gecko inspired wedged surface fabricated with ultraprecision diamond cutting. Advanced Functional Materials,27(22), 1606576. https://doi.org/10.1002/adfm.201606576.

  13. 13.

    Kwak, M. K., Jeong, H. E., & Suh, K. Y. (2011). Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Advanced Materials,23(34), 3949–3953.

  14. 14.

    Kang, S. M., Kim, J. H., & Kim, S. M. (2017). Partial wrinkle generation for switchable attachment and high adhesion hysteresis. International Journal of Precision Engineering and Manufacturing,18(1), 133–137.

  15. 15.

    Yi, H., Hwang, I., Sung, M., Lee, D., Kim, J.-H., Kang, S. M., et al. (2014). Bio-inspired adhesive systems for next-generation green manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology,1(4), 347–351.

  16. 16.

    Boesel, L. F., Greiner, C., Arzt, E., & Del Campo, A. (2010). Gecko-inspired surfaces: A path to strong and reversible dry adhesives. Advanced Materials,22(19), 2125–2137.

  17. 17.

    Kizilkan, E., Strueben, J., Staubitz, A., & Gorb, S. N. J. S. R. (2017). Bioinspired photocontrollable microstructured transport device. Science Robotics,2, 9454.

  18. 18.

    Kang, S. M. (2016). Bioinspired design and fabrication of green-environmental dry adhesive with robust wide-tip shape. International Journal of Precision Engineering and Manufacturing-Green Technology,3(2), 189–192.

  19. 19.

    Heepe, L., Kovalev, A., Varenberg, M., Tuma, J., & Gorb, S. (2012). First mushroom-shaped adhesive microstructure: A review. Theoretical and Applied Mechanics Letters,2(1), 014008.

  20. 20.

    Jeong, H. E., Kwak, M. K., & Suh, K. Y. (2010). Stretchable, adhesion-tunable dry adhesive by surface wrinkling. Langmuir,26(4), 2223–2226.

  21. 21.

    Shahsavan, H., Salili, S. M., Jákli, A., & Zhao, B. J. A. M. (2017). Thermally active liquid crystal network gripper mimicking the self-peeling of gecko toe pads. Advanced Materials,29(3), 1604021.

  22. 22.

    https://www.youtube.com/watch?v=uEYcY7WfDTY. Accessed 11 Sept 2018.

  23. 23.

    Autumn, K., & Puthoff, J. (2016). Properties, principles, and parameters of the gecko adhesive system. Biological adhesives (pp. 245–280). New York: Springer.

  24. 24.

    Carbone, G., Pierro, E., & Gorb, S. N. (2011). Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces. Soft Matter,7(12), 5545–5552.

  25. 25.

    Bae, W.-G., Kim, D., & Suh, K.-Y. (2013). Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system. Nanoscale,5(23), 11876–11884.

  26. 26.

    Glassmaker, N. J., Jagota, A., Hui, C.-Y., Noderer, W. L., & Chaudhury, M. K. (2007). Biologically inspired crack trapping for enhanced adhesion. Proceedings of the National Academy of Sciences,104(26), 10786–10791.

Download references

Acknowledgements

This work was supported by Incheon National University Research Grant in 2016 (20162043). This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (no. 2017R1C1B1005834).

Author information

Correspondence to Sang Moon Kim or Seong Min Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 732 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Jeong, H.E., Kim, S.M. et al. Enhanced Directional Adhesion Behavior of Mushroom-Shaped Microline Arrays. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 239–245 (2020). https://doi.org/10.1007/s40684-019-00112-6

Download citation

Keywords

  • Biomimetics
  • Mushroom-shaped microline
  • Directional adhesion behavior
  • Micro/nano processing