Skip to main content
Log in

Abstract

Recycled tire rubber is an environmentally and economically beneficial material. Ground tire rubber (GTR) as a filler in a polymer matrix was used as an ink material (composite material) for material extrusion in a 3D printing process. The maximum allowable amount of GTR incorporated into the mixture without significantly altering the rheological behavior of the ink was set. Printability investigations revealed that pressure and speed show linear and power relationships, respectively, to the line width for three different amounts of GTR. Moreover, the post-curing time of 30 min at 115 °C was set as the full-cure condition to achieve polymerization of 80% or more for the 3D printed parts. Unidirectional tensile testing demonstrated that 3D printed specimens exhibit no degradation in tensile strength when compared to molded specimens. Moreover, printability and mechanical properties of functionalized GTR were investigated to determine if this material exhibits enhanced mechanical strength. Unidirectional tensile tests show that the maximum tensile strength for specimens with functionalized GTR was 20% higher than in specimens with non-functionalized GTR. In conclusion, 3D printing of GTR composites shows promise for using recycled GTR to create 3D structures with rubber-like properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

GTR:

Ground tire rubber

PHR:

Part per hundred rubber

DP:

Direct-print

References

  1. Czajczynska, D., Krzyzynska, R., Jouhara, H., & Spencer, N. (2017). Use of pyrolytic gas from waste tire as a fuel: A review. Energy, 134, 1121–1131. (In Press).

    Article  Google Scholar 

  2. Adhikari, B., De, D., & Maiti, S. (2000). Reclamation and recycling of waste rubber. Progress in Polymer Science, 25(7), 909–948.

    Article  Google Scholar 

  3. Fang, Y., Zhan, M. S., & Wang, Y. (2001). The status of recycling of waste rubber. Materials and Design, 22(2), 123–127.

    Article  Google Scholar 

  4. De, D., Das, A., Dey, B., Debnath, S. C., & Roy, B. C. (2006). Reclaiming of ground rubber tire (GRT) by a novel reclaiming agent. European Polymer Journal, 42(4), 917–927.

    Article  Google Scholar 

  5. Wu, B., & Zhou, M. H. (2009). Recycling of waste tyre rubber into oil absorbent. Waste Management, 29(1), 355–359.

    Article  Google Scholar 

  6. Burford, R., & Pittolo, M. (1982). Characterization and performance of powdered rubber. Rubber Chemistry and Technology, 55(5), 1233–1249.

    Article  Google Scholar 

  7. Rattanasom, N., Saowapark, T., & Deeprasertkul, C. (2007). Reinforcement of natural rubber with silica/carbon black hybrid filler. Polymer Testing, 26(3), 369–377.

    Article  Google Scholar 

  8. Stockelhuber, K. W., Svistkov, A. S., Pelevin, A. G., & Heinrich, G. (2011). Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules, 44(11), 4366–4381.

    Article  Google Scholar 

  9. Rattanasom, N., Poonsuk, A., & Makmoon, T. (2005). Effect of curing system on the mechanical properties and heat aging resistance of natural rubber/tire tread reclaimed rubber blends. Polymer Testing, 24(6), 728–732.

    Article  Google Scholar 

  10. Segre, N., & Joekes, I. (2000). Use of tire rubber particles as addition to cement paste. Cement and Concrete Research, 30(9), 1421–1425.

    Article  Google Scholar 

  11. Rattanasom, N., Prasertsri, S., & Ruangritnumchai, T. (2009). Comparison of the mechanical properties at similar hardness level of natural rubber filled with various reinforcing-fillers. Polymer Testing, 28(1), 8–12.

    Article  Google Scholar 

  12. Sonnier, R., Leroy, E., Clerc, L., Bergeret, A., Lopez-Cuesta, J. M., Bretelle, A. S., et al. (2008). Compatibilizing thermoplastic/ground tyre rubber powder blends: Efficiency and limits. Polymer Testing, 27(7), 901–907.

    Article  Google Scholar 

  13. Shanmugharaj, A. M., Kim, J. K., & Ryu, S. H. (2005). UV surface modification of waste tire powder: Characterization and its influence on the properties of polypropylene/waste powder composites. Polymer Testing, 24(6), 739–745.

    Article  Google Scholar 

  14. Song, X. F., Wang, Z. B., & Wang, B. X. (2016). Mechanical properties, morphology, and Mullins effect of thermoplastic elastomers based on polypropylene and waste ethylene–propylene–diene terpolymer powder compatibilized by styrene–butadiene–styrene block copolymer. Journal of Thermoplastic Composite Materials, 29(3), 410–424.

    Article  Google Scholar 

  15. Hernandez, E. H., Gamez, J. F. H., Cepeda, L. F., Munoz, E. J. C., Corral, F. S., Rosales, S. G. S., et al. (2017). Sulfuric acid treatment of ground tire rubber and its effect on the mechanical and thermal properties of polypropylene composites. Journal of Applied Polymer Science, 134, 21.

    Article  Google Scholar 

  16. Vehseto, M., & Seitz, H. (2014). A new micro-stereolithography-system based on diode laser curing (DLC). International Journal of Precision Engineering and Manufacturing, 15(10), 2161–2166.

    Article  Google Scholar 

  17. Weller, C., Kleer, R., & Piller, F. T. (2015). Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited. International Journal of Production Economics, 164, 43–56.

    Article  Google Scholar 

  18. Prasad, D. (2015). Additive manufacturing—a brief foray into the advancements in manufacturing technologies. International Journal of Advance Industrial Engineering, 3(3), 115–119.

    Google Scholar 

  19. Ho, C. M. B., Ng, S. H., & Yoon, Y. J. (2015). A review on 3D printed bioimplants. International Journal of Precision Engineering and Manufacturing, 16(5), 1035–1046.

    Article  Google Scholar 

  20. Lee, J., Kim, H. C., Choi, J. W., & Lee, I. H. (2017). A review on 3D printed smart devices for 4D printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 373–383.

    Article  Google Scholar 

  21. Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites: Part B, 110, 442–458.

    Article  Google Scholar 

  22. Chong, S., Chiu, H. L., Liao, Y. C., Hung, S. T., & Pan, G. T. (2015). Cradle to Cradle (R) Design for 3D printing. Pres15, 45, 1669–1674.

    Google Scholar 

  23. Braanker, G., Duwel, J., Flohil, J., & Tokaya, G. (2010). Developing a plastics recycling add-on for the RepRap 3D printer. Delft: Delft University of Technology, Prototyping Lab.

    Google Scholar 

  24. Kreiger, M. A., Mulder, M. L., Glover, A. G., & Pearce, J. M. (2014). Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament. Journal of Cleaner Production, 70, 90–96.

    Article  Google Scholar 

  25. Feeley, S. R., Wijnen, B., & Pearce, J. M. (2014). Evaluation of potential fair trade standards for an ethical 3-D printing filament. Journal of Sustainable Development, 7(5), 1.

    Article  Google Scholar 

  26. Truby, R. L., & Lewis, J. A. (2016). Printing soft matter in three dimensions. Nature, 540(7633), 371–378.

    Article  Google Scholar 

  27. Vatani, M., Engeberg, E. D., & Choi, J. W. (2013). Force and slip detection with direct-write compliant tactile sensors using multi-walled carbon nanotube/polymer composites. Sensors and Actuators a-Physical, 195, 90–97.

    Article  Google Scholar 

  28. Hon, K. K. B., Li, L., & Hutchings, I. M. (2008). Direct writing technology-Advances and developments. CIRP Annals-Manufacturing Technology, 57(2), 601–620.

    Article  Google Scholar 

  29. Agrawal, R., Saxena, N. S., Sharma, K. B., Thomas, S., & Sreekala, M. S. (2000). Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 277(1–2), 77–82.

    Article  Google Scholar 

  30. Li, J. P., de Wijn, J. R., Van Blitterswijk, C. A., & de Groot, K. (2006). Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment. Biomaterials, 27(8), 1223–1235.

    Article  Google Scholar 

  31. Chen, C.-P., Li, H.-X., & Ding, H. (2007). Modeling and control of time-pressure dispensing for semiconductor manufacturing. International Journal of Automation and Computing, 4(4), 422–427.

    Article  Google Scholar 

  32. Vallittu, P. K., Ruyter, I. E., & Buykuilmaz, S. (1998). Effect of polymerization temperature and time on the residual monomer content of denture base polymers. European Journal of Oral Sciences, 106(1), 588–593.

    Article  Google Scholar 

  33. Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D. H. T., Cohen, D. M., et al. (2012). Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nature Materials, 11(9), 768–774.

    Article  Google Scholar 

  34. Le, X., Akouri, R., Latassa, A., Passemato, B., Wales, R. (2016). In Mechanical Property Testing and Analysis of 3D Printing Objects, ASME 2016 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers. pp. V002T02A059–V002T02A059.

  35. Mirjalili, F., Chuah, L., & Salahi, E. (2014). Mechanical and morphological properties of polypropylene/nano alpha-Al2O3 composites. Scientific World Journal. https://doi.org/10.1155/2014/718765.

    Google Scholar 

  36. Huang, L., Zhan, R. B., & Lu, Y. F. (2006). Mechanical properties and crystallization behavior of polypropylene/nano-SiO2 composites. Journal of Reinforced Plastics and Composites, 25(9), 1001–1012.

    Article  Google Scholar 

  37. Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., & Kumar, R. (2013). Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 38(8), 1232–1261.

    Article  Google Scholar 

  38. Zhang, X. X., Zhu, X. Q., Liang, M., & Lu, C. H. (2009). Improvement of the properties of ground tire rubber (GTR)-filled nitrile rubber vulcanizates through plasma surface modification of GTR powder. Journal of Applied Polymer Science, 114(2), 1118–1125.

    Article  Google Scholar 

  39. Akil, H. M., Lily, N., Abd Razak, J., Ong, H., & Ahmad, Z. A. (2006). Effect of various coupling agents on properties of alumina-filled PP composites. Journal of Reinforced Plastics and Composites, 25(7), 745–759.

    Article  Google Scholar 

Download references

Acknowledgements

The first author has been financially supported by Jazan University and Saudi Arabian Cultural mission (SACM) during the completion of this work. The authors also would like to thank Mr. Md Omar Faruk Emon at The University of Akron, USA, for providing the tire tread design that was used for the 3D printred tire tread in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Won Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkadi, F., Lee, J., Yeo, JS. et al. 3D Printing of Ground Tire Rubber Composites. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 211–222 (2019). https://doi.org/10.1007/s40684-019-00023-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00023-6

Keywords

Navigation