Ultrasound-based detection of glucocorticoid-induced impairments of muscle mass and structure in Cushing’s disease

  • M. A. MinettoEmail author
  • C. Caresio
  • M. Salvi
  • V. D’Angelo
  • N. E. Gorji
  • F. Molinari
  • G. Arnaldi
  • S. Kesari
  • E. Arvat
Original Article



To investigate the glucocorticoid-induced impairments of muscle mass and structure in patients presenting different stages of steroid myopathy progression.


Thirty-three patients (28 women) affected by active (N = 20) and remitted (N = 13) Cushing’s disease were recruited and the following variables were assessed: walking speed, handgrip strength, total body and appendicular muscle mass by bioelectrical impedance analysis (BIA), thickness and echo intensity of lower limb muscles by ultrasonography.


The two groups of patients showed comparable values of both handgrip strength [median (interquartile range) values: active disease: 27.4 (7.5) kg vs. remitted disease: 26.4 (9.4) kg; P = 0.58] and walking speed [active disease: 1.0 (0.2) m/s vs. remitted disease: 1.1 (0.3) m/s; P = 0.43]. Also, the thickness of the four muscles and all BIA-derived sarcopenic indices were comparable (P > 0.05 for all comparisons) between the two groups. On the contrary, the echo intensity of vastus lateralis, tibialis anterior (lower portion), and medial gastrocnemius was significantly (P < 0.05 for all comparisons) higher in patients with active disease compared to patients with remitted disease. Finally, significant negative correlations were found in the whole group of patients between muscle echo intensity and muscle function assessments.


We provided preliminary evidence that the ultrasound-derived measurements of muscle thickness and echo intensity can be useful to detect and track the changes of muscle mass and structure in patients with steroid myopathy and we suggest that the combined assessment of muscle mass, strength, and performance should be systematically applied in the routine examination of steroid myopathy patients.


Bioelectrical impedance analysis Echo intensity Muscle thickness Muscle ultrasonography Sarcopenia Steroid myopathy 


Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to disclosure.

Ethical approval

The study was approved by the local ethics committee. The study conformed with the guidelines in the Declaration of Helsinki and was approved by the local ethics committee.

Informed consent

All patients received a detailed explanation of the study and gave written informed consent prior to participation.

Supplementary material

40618_2018_979_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)
40618_2018_979_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 kb)
40618_2018_979_MOESM3_ESM.pdf (356 kb)
Supplementary material 3 (PDF 356 kb)


  1. 1.
    Minetto MA, Lanfranco F, Motta G, Allasia S, Arvat E, D’Antona G (2011) Steroid myopathy: some unresolved issues. J Endocrinol Investig 34:370–375CrossRefGoogle Scholar
  2. 2.
    Pereira RM, Freire de Carvalho J (2011) Glucocorticoid-induced myopathy. Jt Bone Spine 78:41–44CrossRefGoogle Scholar
  3. 3.
    Schakman O, Kalista S, Barbé C, Loumaye A, Thissen JP (2013) Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 45:2163–2172CrossRefGoogle Scholar
  4. 4.
    Minetto MA, D’Angelo V, Arvat E, Kesari S (2018) Diagnostic work-up in steroid myopathy. Endocrine 60:219–223CrossRefGoogle Scholar
  5. 5.
    Minetto MA, Rainoldi A, Jabre JF (2007) The clinical use of macro and surface electromyography in diagnosis and follow-up of endocrine and drug-induced myopathies. J Endocrinol Investig 30:791–796CrossRefGoogle Scholar
  6. 6.
    Minetto MA, Botter A, Lanfranco F, Baldi M, Ghigo E, Arvat E (2010) Muscle fiber conduction slowing and decreased levels of circulating muscle proteins after short-term dexamethasone administration in healthy subjects. J Clin Endocrinol Metab 95:1663–1671CrossRefGoogle Scholar
  7. 7.
    Minetto MA, Lanfranco F, Botter A, Motta G, Mengozzi G, Giordano R, Picu A, Ghigo E, Arvat E (2011) Do muscle fiber conduction slowing and decreased levels of circulating muscle proteins represent sensitive markers of steroid myopathy? A pilot study in Cushing’s disease. Eur J Endocrinol 164:985–993CrossRefGoogle Scholar
  8. 8.
    Blijham PJ, ter Laak HJ, Schelhaas HJ, van Engelen BG, Stegeman DF, Zwarts MJ (2006) Relation between muscle fiber conduction velocity and fiber size in neuromuscular disorders. J Appl Physiol (1985) 100:1837–1841CrossRefGoogle Scholar
  9. 9.
    Minetto MA, Qaisar R, Agoni V, Motta G, Longa E, Miotti D, Pellegrino MA, Bottinelli R (2015) Quantitative and qualitative adaptations of muscle fibers to glucocorticoids. Muscle Nerve 52:631–639CrossRefGoogle Scholar
  10. 10.
    Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol (1985) 96:1486–1495CrossRefGoogle Scholar
  11. 11.
    Farina D, Falla D (2008) Effect of muscle-fiber velocity recovery function on motor unit action potential properties in voluntary contractions. Muscle Nerve 37:650–658CrossRefGoogle Scholar
  12. 12.
    Kamavuako EN, Farina D (2010) Time-dependent effects of pre-conditioning activation on muscle fiber conduction velocity and twitch torque. Muscle Nerve 42:547–555CrossRefGoogle Scholar
  13. 13.
    Reeves ND, Maganaris CN, Narici MV (2004) Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol 91:116–118CrossRefGoogle Scholar
  14. 14.
    Arts IM, Pillen S, Schelhaas HJ, Overeem S, Zwarts MJ (2010) Normal values for quantitative muscle ultrasonography in adults. Muscle Nerve 41:32–41CrossRefGoogle Scholar
  15. 15.
    Noorkoiv M, Nosaka K, Blazevich AJ (2010) Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. Eur J Appl Physiol 109:631–639CrossRefGoogle Scholar
  16. 16.
    Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P (1996) In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol 496:287–297CrossRefGoogle Scholar
  17. 17.
    Kwah LK, Pinto RZ, Diong J, Herbert RD (2013) Reliability and validity of ultrasound measurements of muscle fascicle length and pennation in humans: a systematic review. J Appl Physiol (1985) 114:761–769CrossRefGoogle Scholar
  18. 18.
    Pillen S, Arts IM, Zwarts MJ (2008) Muscle ultrasound in neuromuscular disorders. Muscle Nerve 37:679–693CrossRefGoogle Scholar
  19. 19.
    Seymour JM, Ward K, Sidhu PS, Puthucheary Z, Steier J, Jolley CJ, Rafferty G, Polkey MI, Moxham J (2009) Ultrasound measurement of rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD. Thorax 64:418–423CrossRefGoogle Scholar
  20. 20.
    Atkinson RA, Srinivas-Shankar U, Roberts SA, Connolly MJ, Adams JE, Oldham JA, Wu FC, Seynnes OR, Stewart CE, Maganaris CN, Narici MV (2010) Effects of testosterone on skeletal muscle architecture in intermediate-frail and frail elderly men. J Gerontol A Biol Sci Med Sci 65:1215–1219CrossRefGoogle Scholar
  21. 21.
    Nijholt W, Scafoglieri A, Jager-Wittenaar H, Hobbelen JSM, van der Schans CP (2017) The reliability and validity of ultrasound to quantify muscles in older adults: a systematic review. J Cachexia Sarcopenia Muscle 8:702–712CrossRefGoogle Scholar
  22. 22.
    Pillen S, Tak RO, Zwarts MJ, Lammens MM, Verrijp KN, Arts IM, van der Laak JA, Hoogerbrugge PM, van Engelen BG, Verrips A (2009) Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasound Med Biol 35:443–446CrossRefGoogle Scholar
  23. 23.
    Hu CF, Chen CP, Tsai WC, Hu LL, Hsu CC, Tseng ST, Shau YW (2012) Quantification of skeletal muscle fibrosis at different healing stages using sonography: a morphologic and histologic study in an animal model. J Ultrasound Med 31:43–88CrossRefGoogle Scholar
  24. 24.
    Arts IM, Schelhaas HJ, Verrijp KC, Zwarts MJ, Overeem S, van der Laak JA, Lammens MM, Pillen S (2012) Intramuscular fibrous tissue determines muscle echo intensity in amyotrophic lateral sclerosis. Muscle Nerve 45:449–450CrossRefGoogle Scholar
  25. 25.
    Caresio C, Molinari F, Emanuel G, Minetto MA (2015) Muscle echo intensity: reliability and conditioning factors. Clin Physiol Funct Imaging 35:393–403CrossRefGoogle Scholar
  26. 26.
    Garrapa GG, Pantanetti P, Arnaldi G, Mantero F, Faloia E (2001) Body composition and metabolic features in women with adrenal incidentaloma or Cushing’s syndrome. J Clin Endocrinol Metab 86:5301–5306PubMedGoogle Scholar
  27. 27.
    Resmini E, Farkas C, Murillo B, Barahona MJ, Santos A, Martínez-Momblán MA, Roig O, Ybarra J, Geli C, Webb SM (2010) Body composition after endogenous (Cushing’s syndrome) and exogenous (rheumatoid arthritis) exposure to glucocorticoids. Horm Metab Res 42:613–618CrossRefGoogle Scholar
  28. 28.
    London E, Lodish M, Keil M, Lyssikatos C, de la Luz Sierra M, Nesterova M, Stratakis CA (2014) Not all glucocorticoid-induced obesity is the same: differences in adiposity among various diagnostic groups of Cushing syndrome. Horm Metab Res 46:897–903CrossRefGoogle Scholar
  29. 29.
    Minetto MA, Caresio C, D’Angelo V, Lanfranco F, Ghizzoni L, Roatta S, Arvat E, Kesari S (2018) Diagnostic evaluation in steroid-induced myopathy: case report suggesting clinical utility of quantitative muscle ultrasonography. Endocr Res 12:1–11Google Scholar
  30. 30.
    Arnaldi G, Angeli A, Atkinson AB, Bertagna X, Cavagnini F, Chrousos G, Fava GA, Findling JW, Gaillard RC, Grossman AB, Kola B, Lacroix A, Mancini T, Mantero F, Newell-Price J, Nieman LK, Sonino N, Vance ML, Giustina A, Boscaro M (2003) Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 88:5593–5602CrossRefGoogle Scholar
  31. 31.
    Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM (2008) The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 93:1526–1540CrossRefGoogle Scholar
  32. 32.
    Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A (2016) Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol 4:611–629CrossRefGoogle Scholar
  33. 33.
    Berr CM, Stieg MR, Deutschbein T, Quinkler M, Schmidmaier R, Osswald A, Reisch N, Ritzel K, Dimopoulou C, Fazel J, Hahner S, Stalla GK, Beuschlein F, Reincke M (2017) Persistence of myopathy in Cushing’s syndrome: evaluation of the German Cushing’s Registry. Eur J Endocrinol 176:737–746CrossRefGoogle Scholar
  34. 34.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M (2010) European Working Group on Sarcopenia in Older People, Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423CrossRefGoogle Scholar
  35. 35.
    Janssen I, Heymsfield SB, Baumgartner RN, Ross R (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol (1985) 89:465–471CrossRefGoogle Scholar
  36. 36.
    Sergi G, De Rui M, Veronese N, Bolzetta F, Berton L, Carraro S, Bano G, Coin A, Manzato E, Perissinotto E (2015) Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin Nutr 34:667–673CrossRefGoogle Scholar
  37. 37.
    Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50:889–896CrossRefGoogle Scholar
  38. 38.
    Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R (2004) Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 159:413–421CrossRefGoogle Scholar
  39. 39.
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763CrossRefGoogle Scholar
  40. 40.
    Cawthon PM, Peters KW, Shardell MD, McLean RR, Dam TT, Kenny AM, Fragala MS, Harris TB, Kiel DP, Guralnik JM, Ferrucci L, Kritchevsky SB, Vassileva MT, Studenski SA, Alley DE (2014) Cutpoints for low appendicular lean mass that identify older adults with clinically significant weakness. J Gerontol A Biol Sci Med Sci 69:567–575CrossRefGoogle Scholar
  41. 41.
    Molinari F, Caresio C, Acharya UR, Mookiah MR, Minetto MA (2015) Advances in quantitative muscle ultrasonography using texture analysis of ultrasound images. Ultrasound Med Biol 41:2520–2532CrossRefGoogle Scholar
  42. 42.
    Minetto MA, Caresio C, Menapace T, Hajdarevic A, Marchini A, Molinari F, Maffiuletti NA (2016) Ultrasound-based detection of low muscle mass for diagnosis of sarcopenia in older adults. PM&R 8:453–462CrossRefGoogle Scholar
  43. 43.
    Caresio C, Salvi M, Molinari F, Meiburger KM, Minetto MA (2017) Fully automated muscle ultrasound analysis (MUSA): robust and accurate muscle thickness measurement. Ultrasound Med Biol 43:195–205CrossRefGoogle Scholar
  44. 44.
    Geer EB, Shen W, Strohmayer E, Post KD, Freda PU (2012) Body composition and cardiovascular risk markers after remission of Cushing’s disease: a prospective study using whole-body MRI. J Clin Endocrinol Metab 97:1702–1711CrossRefGoogle Scholar
  45. 45.
    Lopez P, Wilhelm EN, Rech A, Minozzo F, Radaelli R, Pinto RS (2017) Echo intensity independently predicts functionality in sedentary older men. Muscle Nerve 55:9–15CrossRefGoogle Scholar
  46. 46.
    Mirón Mombiela R, Facal de Castro F, Moreno P, Borras C (2017) Ultrasonic echo intensity as a new noninvasive in vivo biomarker of frailty. J Am Geriatr Soc 65:2685–2690CrossRefGoogle Scholar
  47. 47.
    Pillen S, van Dijk JP, Weijers G, Raijmann W, de Korte CL, Zwarts MJ (2009) Quantitative gray-scale analysis in skeletal muscle ultrasound: a comparison study of two ultrasound devices. Muscle Nerve 39:781–786CrossRefGoogle Scholar
  48. 48.
    Seene T, Kaasik P (2016) Role of myofibrillar protein catabolism in development of glucocorticoid myopathy: aging and functional activity aspects. Metabolites 6:E15CrossRefGoogle Scholar
  49. 49.
    Maffiuletti NA (2010) Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 110:223–234CrossRefGoogle Scholar
  50. 50.
    Lukaski HC, Bolonchuk WW, Hall CB, Siders WA (1986) Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol (1985) 60:1327–1332CrossRefGoogle Scholar
  51. 51.
    Moon JR (2013) Body composition in athletes and sports nutrition: an examination of the bioimpedance analysis technique. Eur J Clin Nutr 67:S54–S59CrossRefGoogle Scholar
  52. 52.
    Drey M, Berr CM, Reincke M, Fazel J, Seissler J, Schopohl J, Bidlingmaier M, Zopp S, Reisch N, Beuschlein F, Osswald A, Schmidmaier R (2017) Cushing’s syndrome: a model for sarcopenic obesity. Endocrine 57:481–485CrossRefGoogle Scholar
  53. 53.
    Kemink SA, Frijns JT, Hermus AR, Pieters GF, Smals AG, van Marken Lichtenbelt WD (1999) Body composition determined by six different methods in women bilaterally adrenalectomized for treatment of Cushing’s disease. J Clin Endocrinol Metab 84:3991–3999PubMedGoogle Scholar
  54. 54.
    Pirlich M, Biering H, Gerl H, Ventz M, Schmidt B, Ertl S, Lochs H (2002) Loss of body cell mass in Cushing’s syndrome: effect of treatment. J Clin Endocrinol Metab 87:1078–1084PubMedGoogle Scholar
  55. 55.
    Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL (2011) Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res Notes 4:127CrossRefGoogle Scholar
  56. 56.
    Baudry S, Motta G, Botter A, Duchateau J, Minetto MA (2018) Neural correlates to the increase in maximal force after dexamethasone administration. Med Sci Sports Exerc 50:218–224CrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2018

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetology and Metabolism, Department of Medical SciencesUniversity of TurinTurinItaly
  2. 2.Division of Physical Medicine and Rehabilitation, Department of Surgical SciencesUniversity of TurinTurinItaly
  3. 3.Biolab, Department of Electronics and TelecommunicationsPolytechnic University of TurinTurinItaly
  4. 4.Oncological Endocrinology Unit, Department of Medical SciencesUniversity of TurinTurinItaly
  5. 5.Clinic of Endocrinology and Metabolic DiseasesOspedali Riuniti di Ancona University HospitalAnconaItaly
  6. 6.Department of Translational Neurosciences and NeurotherapeuticsJohn Wayne Cancer Institute and Pacific Neuroscience InstituteSanta MonicaUSA

Personalised recommendations