Advertisement

Titanium dioxide nanoparticles model growth kinetic traits of some wheat cultivars under different water regimes

  • Mona F. A. DawoodEmail author
  • Amany H. A. Abeed
  • Eman E. S. Aldaby
Original Article
  • 8 Downloads

Abstract

Deficit irrigation affected drastically growth kinetics and leaves traits with variant degrees drawing the tolerance or sensitivity of four wheat cultivars which recorded from pre- to post-anthesis stage. The main susceptibility characters of hypersensitive cultivar Sohag 3 were reduction of photosynthetic efficiency (chlorophyll and photosynthetic rate), leaf greenness (low leaf area index; LAI), accelerated leaf aging (low biomass duration; BMD and leaf area duration; LAD), thinner and lighter leaves (high specific leaf area; SLA and high leaf area ratio; LAR) which dramatically reflected on low net assimilation rate; NAR and unit leaf rate; ULR, hence diminished absolute growth rate; AGR and relative growth rate; RGR, the vice versa was displayed by the most tolerant cultivar Seds 12. Intermediated response was manifested by cultivars Benisuif 5 and Sakha 93, since the former was close in response to cultivar Seds 12 and the latter showed the main characters of cultivar Sohag 3 but in lower degree. The photo-catalytic property of TiO2-NPs seemingly accomplished improvement of leaves and growth kinetics traits by fertigation the soil of wheat cultivars growing at different water regimes. TiO2-NPs fertigation promoted leaf characteristics through production of thicker and heavier leaves as well as promoting leaf longevity by enhancement of BMD and LAD. Thus, TiO2-NPs activated production of vigor and well-constructed leaves with higher chlorophyll and photosynthetic rate thereby, high LAI, hence higher values of RGR, AGR, ULR and NAR.

Keywords

Drought Growth kinetics TiO2-NPs Wheat 

Abbreviations

AGR

Absolute growth rate

BMD

Biomass duration

cv

Cultivar

LAD

Leaf area duration

LAI

Leaf area index

LAR

Leaf area ratio

NAR

Net assimilation rate

Pn

Photosynthetic rate

RGR

Relative growth rate

SLA

Specific leaf area

TiO2-NPs

Titanium dioxide nanoparticles

ULR

Unit leaf rate

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest between them for publishing this paper.

References

  1. Ahmed, M., Hassan, F., & Asif, M. (2014). Amelioration of drought in sorghum (Sorghum bicolor L.) by silicon. Communications in Soil Science and Plant Analysis, 45, 470–486.CrossRefGoogle Scholar
  2. Allahverdiyev, T. I., Talai J. M., Huseynova, I. M., & Aliyev, J. A. (2015). Effect of drought stress on some physiological parameters, yield, yield components of durum (Triticum durum desf.) and bread (Triticum aestivum L.) wheat genotypes. Ekin Journal of Crop Breeding and Genetics, 1(1), 50–62.Google Scholar
  3. Bayuelo-Jiménez, J. S., Debouck, D. G., & Lynch, J. (2003). Growth, gas exchange, water relations, and in composition of Phaseolus species grown under saline conditions. Field Crops Research, 80, 207–222.CrossRefGoogle Scholar
  4. Benincasa, M. M. P. (1988). Análise de crescimento de plantas (noções básicas) (p. 41). Jaboticabal: FUNEP.Google Scholar
  5. Benincasa, M. M. P. (2003). Análise de crescimento de plantas (noções básicas) (2nd ed., p. 41). Jaboticabal: FUNEP.Google Scholar
  6. Craufurd, P. Q., Wheeler, T. R., Ellis, R. H., Summerfield, R. J., & Williams, J. H. (1999). Effect of temperature and water deficit on water-use efficiency, carbon isotope discrimination, and specific leaf area in peanut. Crop Science, 39, 136–142.CrossRefGoogle Scholar
  7. Dionisio-Sese, M. L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135, 1–9.CrossRefGoogle Scholar
  8. Ehdaie, B., Alloush, G. A., Madore, M. A., & Waines, J. G. (2006). Genotypic variation for stem reserves and mobilization in wheat: II. Post-anthesis changes in internode water-soluble carbohydrates. Crop Science, 46, 2093–2103.CrossRefGoogle Scholar
  9. Evans, G. C. (1972). The quantitative analysis of plant growth. Black Well, Oxford. ISBN 0-632-06130-8.Google Scholar
  10. Fageria, N. K., Baligar, V. C., & Clark, R. B. (2006). Physiology of crop production. New York: The Haworth Press.CrossRefGoogle Scholar
  11. Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., & Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146, 101–106.CrossRefGoogle Scholar
  12. Garnier, E., Shipley, B., Roumet, C., & Laurent, G. (2001). A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology, 15, 688–695.CrossRefGoogle Scholar
  13. Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60, 9781–9792.CrossRefGoogle Scholar
  14. Hong, F., Yang, F., Liu, C., Gao, Q., Wan, Z., Gu, F., et al. (2005). Influence of nano-TiO2 on the chloroplast aging of spinach under light. Journal of the American Society for Horticultural Science, 104, 249–260.Google Scholar
  15. Hunt, R. (1990). Basic growth analysis for beginners. London: Academic press.CrossRefGoogle Scholar
  16. Jones, M. B., Leafe, E. L., & Stile, W. (1980). Water stress in field grown perennial ryegrass, its effect on growth, canopy photosynthesis and transpiration. Annals of Applied Biology, 2, 87–101.CrossRefGoogle Scholar
  17. Khalil, S. K., Hilaire, R. S. T., Khan, A., Rehman, A., & Mexal, J. G. (2011). Growth and physiology of yarrow species Achillea millefolium cv. Cerise Queen and Achillea filipendulina cv. Parker Gold at optimum and limited moisture. Australian Journal of Crop Science, 5, 1698–1706.Google Scholar
  18. Khanghah, A. M., & Jafari, M. A. (2012). A study on various cultivation densities effects on wheat growth indices. International Journal of Agriculture and Crop Sciences, 4, 1337–1341.Google Scholar
  19. Koryo, H. W. (2006). Effect of salinity on growth, physiology, water relations and solute composition of the potential cash crop halophyte Plantago coronopus L. Environmental and Experimental Botany, 56, 136–146.CrossRefGoogle Scholar
  20. Kumar, R. A., Singh, M. P., & Kumar, S. A. N. (2012). Growth analysis of wheat (Triticum aestivum L.) genotypes under saline condition. International Journal of Scientific & Technology Research, 1, 15–18.Google Scholar
  21. Lei, Z., Mingyu, S., Chao, L., Liang, C., Hao, H., Xiao, W., et al. (2007). Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biological Trace Element Research, 119, 68–76.CrossRefGoogle Scholar
  22. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymology, 148, 350–382.CrossRefGoogle Scholar
  23. Lopez, F. B., Chauhan, Y. S., & Johansen, C. (1997). Effects of timing of drought stress on leaf area development and canopy light interception of short-duration pigeon pea. Journal of Agronomy and Crop Science, 178, 1–7.CrossRefGoogle Scholar
  24. Mahmoodzadeh, H., Aghili, R., & Nabavi, M. (2013). Physiological effects of TiO2 nanoparticles on wheat (Triticum aestivum). Journal of Applied Science, Engineering and Technology, 3, 1365–1370.Google Scholar
  25. Mccree, K. J., & Davis, S. D. (1974). Effect of water stress and temperature on leaf epidermal cells in grain sorghum. Crop Science, 5, 751–755.CrossRefGoogle Scholar
  26. Mediavilla, S., Escudero, A., & Heilmeier, H. (2001). Internal leaf anatomy and photosynthetic resource-use efficiency: Interspecific and intraspecific comparison. Tree Physiology, 21, 251–259.CrossRefGoogle Scholar
  27. Merino, J., Field, C., & Mooney, H. A. (1984). Construction and maintenance costs of Mediterranean-climate evergreen and deciduous leaves. II. Biochemical Pathway Analysis. Acta Oecol/Oecol Plant, 5, 211–229.Google Scholar
  28. Mishra, Vani, Mishra, Rohit K., Dikshit, Anupam, & Pandey, Avinash C. (2014). Interactions of nanoparticles with plants: An emerging prospective in the agriculture industry. Emerging Technologies and Management of Crop Stress Tolerance, 1, 159–180.CrossRefGoogle Scholar
  29. Monica, R. C., & Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia, 62, 161–165.CrossRefGoogle Scholar
  30. Morteza, E., Moaveni, P., Farahani, H. A., & Kiyani, M. (2013). Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. SpringerPlus, 2, 247.CrossRefGoogle Scholar
  31. Niinemets, U. (1999). Components of leaf dry mass per area, thickness and density, alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist, 144, 35–47.CrossRefGoogle Scholar
  32. Norman, J. M., & Campbell, G. S. (1989). Canopy Structure. In R. W. Pearcy, J. Ehleringer, H. A. Mooney, & P. W. Rundel (Eds.), Plant Physiological Ecology: Field methods and instrumentation (pp. 301–325). New York: Chapman & Hall.CrossRefGoogle Scholar
  33. Oestigaard, T. (2010). Nile issues, small streams from the Nile basin research programme. Fountain Publishers, Kampala Fountain Publishers. P. O. Box 488, Kampala–Uganda. ISBN 978-9970-25-002-8.Google Scholar
  34. Poorter, H. (1989). Interspecific variation in relative growth rate: On ecological causes and physiological consequences. In H. Lambers, M. L. Cambridge, H. Konings, & T. L. Pons (Eds.), Causes and consequences of variation in growth rate and productivity of higher plants (pp. 45–68). The Hague: SPB Academic Publishing.Google Scholar
  35. Power, J. F., Mills, W. O., & Grunes, D. L. (1967). Effect of soil temperature, phosphorous on growth analysis of barley. Agronomy Journal, 59, 231–234.CrossRefGoogle Scholar
  36. Reddy, T. Y., Reddy, V. R., & Anbumozhi, V. (2003). Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: A critical review. Plant Growth Regulation, 41, 75–88.CrossRefGoogle Scholar
  37. Regan, K. L., Siddique, K. H. M., Turner, N. C., & Whan, B. R. (1992). Potential for increasing early vigor and total biomass in spring wheat. II. Characteristics associated with early vigour. Australian Journal of Agricultural Research, 43, 541–553.CrossRefGoogle Scholar
  38. Royo, C., Abaza, M., Blanco, R., & del Moral, L. F. G. (2000). Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Australian Journal of Plant Physiology, 27, 1051–1059.Google Scholar
  39. Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J. L., & Wiesner, M. R. (2016). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology, 10, 257–278.PubMedGoogle Scholar
  40. Šesták, Z., Čatský, J., & Jarvis, P. G. (Eds.). (1971). Plant photosynthetic production (p. 818). The Hague: Manual of methods.Google Scholar
  41. Talebifar, M., Taghizadeh, R., & Kamali-Kivee, S. I. (2013). Evaluation of growth physiological indices under irrigation stress conditions in different varieties of wheat (Triticum aestivum & durum). International Journal of Agronomy and Plant Production, 4, 507–514.Google Scholar
  42. Tedeschi, A., Riccardia, M., & Menenti, M. (2011). Melon crops (Cucumis melo L., cv. Tendral) grow in a Mediterranean environment under saline–sodic conditions: Part II. Growth Analysis Agricultural Water Management, 98, 1339–1348.CrossRefGoogle Scholar
  43. Woolhouse, H. W. (1984). The biochemistry and regulation of senescence in chloroplasts. Canadian Journal of Botany, 62, 2934–2942.CrossRefGoogle Scholar
  44. Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., et al. (2006). Influence of nanoanatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110, 179–190.CrossRefGoogle Scholar
  45. Zhang, X. Z. (1989). Investigation methods for crop, physiology agric (p. 259). Beijing: Press of China.Google Scholar
  46. Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104, 83–91.CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2019

Authors and Affiliations

  • Mona F. A. Dawood
    • 1
    Email author
  • Amany H. A. Abeed
    • 1
  • Eman E. S. Aldaby
    • 1
  1. 1.Department of Botany and Microbiology, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations