Skip to main content
Log in

Titanium dioxide nanoparticles model growth kinetic traits of some wheat cultivars under different water regimes

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Deficit irrigation affected drastically growth kinetics and leaves traits with variant degrees drawing the tolerance or sensitivity of four wheat cultivars which recorded from pre- to post-anthesis stage. The main susceptibility characters of hypersensitive cultivar Sohag 3 were reduction of photosynthetic efficiency (chlorophyll and photosynthetic rate), leaf greenness (low leaf area index; LAI), accelerated leaf aging (low biomass duration; BMD and leaf area duration; LAD), thinner and lighter leaves (high specific leaf area; SLA and high leaf area ratio; LAR) which dramatically reflected on low net assimilation rate; NAR and unit leaf rate; ULR, hence diminished absolute growth rate; AGR and relative growth rate; RGR, the vice versa was displayed by the most tolerant cultivar Seds 12. Intermediated response was manifested by cultivars Benisuif 5 and Sakha 93, since the former was close in response to cultivar Seds 12 and the latter showed the main characters of cultivar Sohag 3 but in lower degree. The photo-catalytic property of TiO2-NPs seemingly accomplished improvement of leaves and growth kinetics traits by fertigation the soil of wheat cultivars growing at different water regimes. TiO2-NPs fertigation promoted leaf characteristics through production of thicker and heavier leaves as well as promoting leaf longevity by enhancement of BMD and LAD. Thus, TiO2-NPs activated production of vigor and well-constructed leaves with higher chlorophyll and photosynthetic rate thereby, high LAI, hence higher values of RGR, AGR, ULR and NAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AGR:

Absolute growth rate

BMD:

Biomass duration

cv:

Cultivar

LAD:

Leaf area duration

LAI:

Leaf area index

LAR:

Leaf area ratio

NAR:

Net assimilation rate

Pn :

Photosynthetic rate

RGR:

Relative growth rate

SLA:

Specific leaf area

TiO2-NPs:

Titanium dioxide nanoparticles

ULR:

Unit leaf rate

References

  • Ahmed, M., Hassan, F., & Asif, M. (2014). Amelioration of drought in sorghum (Sorghum bicolor L.) by silicon. Communications in Soil Science and Plant Analysis, 45, 470–486.

    Article  CAS  Google Scholar 

  • Allahverdiyev, T. I., Talai J. M., Huseynova, I. M., & Aliyev, J. A. (2015). Effect of drought stress on some physiological parameters, yield, yield components of durum (Triticum durum desf.) and bread (Triticum aestivum L.) wheat genotypes. Ekin Journal of Crop Breeding and Genetics, 1(1), 50–62.

  • Bayuelo-Jiménez, J. S., Debouck, D. G., & Lynch, J. (2003). Growth, gas exchange, water relations, and in composition of Phaseolus species grown under saline conditions. Field Crops Research, 80, 207–222.

    Article  Google Scholar 

  • Benincasa, M. M. P. (1988). Análise de crescimento de plantas (noções básicas) (p. 41). Jaboticabal: FUNEP.

    Google Scholar 

  • Benincasa, M. M. P. (2003). Análise de crescimento de plantas (noções básicas) (2nd ed., p. 41). Jaboticabal: FUNEP.

    Google Scholar 

  • Craufurd, P. Q., Wheeler, T. R., Ellis, R. H., Summerfield, R. J., & Williams, J. H. (1999). Effect of temperature and water deficit on water-use efficiency, carbon isotope discrimination, and specific leaf area in peanut. Crop Science, 39, 136–142.

    Article  Google Scholar 

  • Dionisio-Sese, M. L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135, 1–9.

    Article  CAS  Google Scholar 

  • Ehdaie, B., Alloush, G. A., Madore, M. A., & Waines, J. G. (2006). Genotypic variation for stem reserves and mobilization in wheat: II. Post-anthesis changes in internode water-soluble carbohydrates. Crop Science, 46, 2093–2103.

    Article  CAS  Google Scholar 

  • Evans, G. C. (1972). The quantitative analysis of plant growth. Black Well, Oxford. ISBN 0-632-06130-8.

  • Fageria, N. K., Baligar, V. C., & Clark, R. B. (2006). Physiology of crop production. New York: The Haworth Press.

    Book  Google Scholar 

  • Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., & Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146, 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Garnier, E., Shipley, B., Roumet, C., & Laurent, G. (2001). A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology, 15, 688–695.

    Article  Google Scholar 

  • Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60, 9781–9792.

    Article  CAS  PubMed  Google Scholar 

  • Hong, F., Yang, F., Liu, C., Gao, Q., Wan, Z., Gu, F., et al. (2005). Influence of nano-TiO2 on the chloroplast aging of spinach under light. Journal of the American Society for Horticultural Science, 104, 249–260.

    CAS  Google Scholar 

  • Hunt, R. (1990). Basic growth analysis for beginners. London: Academic press.

    Book  Google Scholar 

  • Jones, M. B., Leafe, E. L., & Stile, W. (1980). Water stress in field grown perennial ryegrass, its effect on growth, canopy photosynthesis and transpiration. Annals of Applied Biology, 2, 87–101.

    Article  Google Scholar 

  • Khalil, S. K., Hilaire, R. S. T., Khan, A., Rehman, A., & Mexal, J. G. (2011). Growth and physiology of yarrow species Achillea millefolium cv. Cerise Queen and Achillea filipendulina cv. Parker Gold at optimum and limited moisture. Australian Journal of Crop Science, 5, 1698–1706.

    Google Scholar 

  • Khanghah, A. M., & Jafari, M. A. (2012). A study on various cultivation densities effects on wheat growth indices. International Journal of Agriculture and Crop Sciences, 4, 1337–1341.

    Google Scholar 

  • Koryo, H. W. (2006). Effect of salinity on growth, physiology, water relations and solute composition of the potential cash crop halophyte Plantago coronopus L. Environmental and Experimental Botany, 56, 136–146.

    Article  CAS  Google Scholar 

  • Kumar, R. A., Singh, M. P., & Kumar, S. A. N. (2012). Growth analysis of wheat (Triticum aestivum L.) genotypes under saline condition. International Journal of Scientific & Technology Research, 1, 15–18.

    Google Scholar 

  • Lei, Z., Mingyu, S., Chao, L., Liang, C., Hao, H., Xiao, W., et al. (2007). Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biological Trace Element Research, 119, 68–76.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  • Lopez, F. B., Chauhan, Y. S., & Johansen, C. (1997). Effects of timing of drought stress on leaf area development and canopy light interception of short-duration pigeon pea. Journal of Agronomy and Crop Science, 178, 1–7.

    Article  Google Scholar 

  • Mahmoodzadeh, H., Aghili, R., & Nabavi, M. (2013). Physiological effects of TiO2 nanoparticles on wheat (Triticum aestivum). Journal of Applied Science, Engineering and Technology, 3, 1365–1370.

    Google Scholar 

  • Mccree, K. J., & Davis, S. D. (1974). Effect of water stress and temperature on leaf epidermal cells in grain sorghum. Crop Science, 5, 751–755.

    Article  Google Scholar 

  • Mediavilla, S., Escudero, A., & Heilmeier, H. (2001). Internal leaf anatomy and photosynthetic resource-use efficiency: Interspecific and intraspecific comparison. Tree Physiology, 21, 251–259.

    Article  CAS  PubMed  Google Scholar 

  • Merino, J., Field, C., & Mooney, H. A. (1984). Construction and maintenance costs of Mediterranean-climate evergreen and deciduous leaves. II. Biochemical Pathway Analysis. Acta Oecol/Oecol Plant, 5, 211–229.

    CAS  Google Scholar 

  • Mishra, Vani, Mishra, Rohit K., Dikshit, Anupam, & Pandey, Avinash C. (2014). Interactions of nanoparticles with plants: An emerging prospective in the agriculture industry. Emerging Technologies and Management of Crop Stress Tolerance, 1, 159–180.

    Article  Google Scholar 

  • Monica, R. C., & Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia, 62, 161–165.

    Article  Google Scholar 

  • Morteza, E., Moaveni, P., Farahani, H. A., & Kiyani, M. (2013). Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. SpringerPlus, 2, 247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niinemets, U. (1999). Components of leaf dry mass per area, thickness and density, alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist, 144, 35–47.

    Article  Google Scholar 

  • Norman, J. M., & Campbell, G. S. (1989). Canopy Structure. In R. W. Pearcy, J. Ehleringer, H. A. Mooney, & P. W. Rundel (Eds.), Plant Physiological Ecology: Field methods and instrumentation (pp. 301–325). New York: Chapman & Hall.

    Chapter  Google Scholar 

  • Oestigaard, T. (2010). Nile issues, small streams from the Nile basin research programme. Fountain Publishers, Kampala Fountain Publishers. P. O. Box 488, Kampala–Uganda. ISBN 978-9970-25-002-8.

  • Poorter, H. (1989). Interspecific variation in relative growth rate: On ecological causes and physiological consequences. In H. Lambers, M. L. Cambridge, H. Konings, & T. L. Pons (Eds.), Causes and consequences of variation in growth rate and productivity of higher plants (pp. 45–68). The Hague: SPB Academic Publishing.

    Google Scholar 

  • Power, J. F., Mills, W. O., & Grunes, D. L. (1967). Effect of soil temperature, phosphorous on growth analysis of barley. Agronomy Journal, 59, 231–234.

    Article  CAS  Google Scholar 

  • Reddy, T. Y., Reddy, V. R., & Anbumozhi, V. (2003). Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: A critical review. Plant Growth Regulation, 41, 75–88.

    Article  CAS  Google Scholar 

  • Regan, K. L., Siddique, K. H. M., Turner, N. C., & Whan, B. R. (1992). Potential for increasing early vigor and total biomass in spring wheat. II. Characteristics associated with early vigour. Australian Journal of Agricultural Research, 43, 541–553.

    Article  Google Scholar 

  • Royo, C., Abaza, M., Blanco, R., & del Moral, L. F. G. (2000). Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Australian Journal of Plant Physiology, 27, 1051–1059.

    CAS  Google Scholar 

  • Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J. L., & Wiesner, M. R. (2016). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology, 10, 257–278.

    CAS  PubMed  Google Scholar 

  • Šesták, Z., Čatský, J., & Jarvis, P. G. (Eds.). (1971). Plant photosynthetic production (p. 818). The Hague: Manual of methods.

    Google Scholar 

  • Talebifar, M., Taghizadeh, R., & Kamali-Kivee, S. I. (2013). Evaluation of growth physiological indices under irrigation stress conditions in different varieties of wheat (Triticum aestivum & durum). International Journal of Agronomy and Plant Production, 4, 507–514.

    Google Scholar 

  • Tedeschi, A., Riccardia, M., & Menenti, M. (2011). Melon crops (Cucumis melo L., cv. Tendral) grow in a Mediterranean environment under saline–sodic conditions: Part II. Growth Analysis Agricultural Water Management, 98, 1339–1348.

    Article  Google Scholar 

  • Woolhouse, H. W. (1984). The biochemistry and regulation of senescence in chloroplasts. Canadian Journal of Botany, 62, 2934–2942.

    Article  CAS  Google Scholar 

  • Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., et al. (2006). Influence of nanoanatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110, 179–190.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X. Z. (1989). Investigation methods for crop, physiology agric (p. 259). Beijing: Press of China.

    Google Scholar 

  • Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104, 83–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona F. A. Dawood.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest between them for publishing this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawood, M.F.A., Abeed, A.H.A. & Aldaby, E.E.S. Titanium dioxide nanoparticles model growth kinetic traits of some wheat cultivars under different water regimes. Plant Physiol. Rep. 24, 129–140 (2019). https://doi.org/10.1007/s40502-019-0437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-019-0437-5

Keywords

Navigation