Skip to main content
Log in

Computational modeling of magnetohydrodynamic convection from a rotating cone in orthotropic Darcian porous media

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Free convective magnetohydrodynamic flow from a spinning vertical cone to an orthotropic Darcian porous medium under a transverse magnetic field is studied. The non-dimensionalized two-point boundary value problem is solved numerically using the Keller Box implicit finite difference method. The effects of spin parameter, orthotropic permeability functions, Prandtl number and hydromagnetic number on flow characteristics are presented graphically. Tangential velocity and swirl velocity are accentuated with increasing permeability owing to a corresponding decrease in porous media resistance. Temperatures are depressed with increasing permeability. Validation of the solutions is achieved with earlier studies. Applications of the study arise in electromagnetic spin coating materials processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

X :

Co-ordinate parallel to the cone surface

Y :

Co-ordinate normal to the cone surface

θ :

Angular co-ordinate

R :

Radial co-ordinate

(R)/ :

Actual radius of cone

r :

Local radius of the cone

U :

Velocity component in the X-direction

V :

Velocity component in the Y-direction

W :

Velocity component in the θ-direction

T :

Fluid temperature

T w :

Cone surface temperature

T :

Free stream temperature

U* :

Reference velocity

B :

Magnetic field strength

g :

Gravitational acceleration

ν :

Kinematic viscosity of fluid

σ :

Electrical conductivity of fluid

ρ :

Density of fluid

K X :

Permeability in the X-direction

K θ :

Permeability in the θ-direction

α :

Thermal diffusivity of the fluid

β :

Coefficient of thermal expansion of the fluid

Ω :

Rotational velocity of the cone (spin velocity about the symmetry axis)

ϕ :

Semi-vertex angle of cone

K :

Second-order permeability tensor

F :

Similarity boundary layer stream function

G :

Similarity boundary layer rotational (swirl) velocity

H :

Similarity boundary layer temperature function

x :

Transformed X co-ordinate

y :

Transformed Y co-ordinate

r :

Transformed local cone radius

u :

Transformed X velocity

v :

Transformed Y velocity

w :

Transformed θ velocity

κ x :

Permeability function in the x-direction (x-direction Darcy number)

κ θ :

Permeability function in the θ-direction (θ-direction Darcy number)

Pr :

Prandtl number

Φ :

Non-dimensional temperature function

Gr L :

Local Grashof number

Re :

Rotational Reynolds number

Nm :

Magnetohydrodynamic body force number

L :

Reference scale length

References

  1. Wu C (1959) The three-dimensional incompressible laminar boundary layer on a spinning cone. Appl Sci Res 8:140

    Article  MathSciNet  MATH  Google Scholar 

  2. Hering RG, Grosh RJ (1963) Laminar combined convection from a rotating cone. ASME J Heat Transfer 85:29

    Article  Google Scholar 

  3. Paterson JA, Grief R, Cornet I (1973) Experimental and theoretical results for mass transfer to a rotating cone in non-Newtonian solutions. Int J Heat Mass Transfer 16:1017–1024

    Article  Google Scholar 

  4. Smith RN, Grief R (1975) Laminar convection to rotating cones and disks in non-Newtonian power-law fluids. Int J Heat Mass Transfer 18:1249–1253

    Article  Google Scholar 

  5. Jeng DR, Chao BT (1976) Unsteady heat transfer from a rotating disk or cone with large suction, 25th Heat Transfer and Fluid Mechanics Institute, USA

  6. Himasekhar K, Sarma PK (1986) Laminar combined convection from a rotating cone to a thermally stratified environment. ASME J Heat Transfer 108:973

    Article  Google Scholar 

  7. Lin HT, Lin LK (1987) Heat transfer from a rotating cone or disk to fluids of any Prandtl number. Int Comm Heat Mass Transfer 14:323

    Article  Google Scholar 

  8. Wang TY, Kleinstreuer C (1990) Similarity solutions of combined convection heat transfer from a rotating cone or disk to non-Newtonian fluids. ASME J Heat Transfer 112:939

    Article  Google Scholar 

  9. Gorla RSR, Nakamura S (1995) Mixed convection of a micropolar fluid from a rotating cone. Int J Heat Fluid Flow 16:69–73

    Article  Google Scholar 

  10. Mao T-S, Wang YC (1993) Holographic visualization of convective flow around a heated rotating cone of finite length. ASME J Fluids Eng 115(3):515–522

  11. Chen H, Jebson RS, Campanella OH (1997) Determination of heat transfer coefficients in rotating cone evaporators: Part 1. Proc IChemE Foods Bioprod Process 75(C1):17–22

    Article  Google Scholar 

  12. Venkateswarlu P, Babu DJ, Naidu SV, Subba Rao D (2004) Studies on ionic mass transfer at a rotating cone in an open cell. Int Comm Heat Mass Transfer 31(2):221–230

    Article  Google Scholar 

  13. Anilkumar D, Roy S (2004) Self-similar solution to unsteady mixed convection flow from a rotating cone in a rotating fluid. SIAM Conf. Appl Math Florida, Gainsville, USA, 3–4 March

  14. Ozturk A, Ece MC (1995) Unsteady forced convection heat transfer from a translating and spinning body. ASME J Energy Res Tech 117:318–323

    Article  Google Scholar 

  15. Macheret SO, Shneider MN, Miles RB (2004) Magnetohydrodynamic and electrohydrodynamic control of hypersonic flows of weakly ionized plasmas. AIAA J 42(7):1378–1387

    Article  Google Scholar 

  16. Keidar M, Kim M, Boyd ID (2008) Electromagnetic reduction of plasma density during atmospheric reentry and hypersonic flights. J. Spacecraft Rockets 45:445–453

    Article  Google Scholar 

  17. Chamkha AJ (1999) Magnetohydrodynamic mixed convection from a rotating cone embedded in a porous medium with heat generation. J Porous Media 2

  18. Takhar HS, Nath G (2000) Self-similar solution of the unsteady flow in the stagnation point region of a rotating sphere with a magnetic field. Heat Mass Transfer J 36:89–96

    Article  Google Scholar 

  19. Takhar HS, Chamkha AJ, Nath G (2001) Unsteady laminar MHD flow and heat transfer in the stagnation region of an impulsively spinning and translating sphere in the presence of buoyancy forces. Heat Mass Transfer J 37:397–402

    Article  Google Scholar 

  20. Roy S, Takhar HS, Nath G (2002) Unsteady MHD flow on a rotating cone in a rotating fluid. Acta Mech 150(1/2):67–77

    MATH  Google Scholar 

  21. Takhar HS, Chamkha AJ, Nath G (2003) Unsteady mixed convection flow from a rotating vertical cone with magnetic field. Heat Mass Transfer J 39:297–304

    Article  Google Scholar 

  22. Ozturk A (2005) Unsteady laminar mixed convection about a spinning sphere with a magnetic field. Heat Mass Transfer J 41:864–874

    Article  Google Scholar 

  23. Periera JCF, Sousa JMM (1999) Confined vortex breakdown generated by a rotating cone. J Fluid Mechanics 385:287–323

    Article  MathSciNet  MATH  Google Scholar 

  24. Chamkha AJ, Al-Mudhaf (2005) Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects. Int J Thermal Sci 44:267–276

  25. Abo-Eldahab EM, El Aziz MA (2004) Hall current and Ohmic heating effects on mixed convection boundary layer flow of a micropolar fluid from a rotating cone with power-law variation in surface-temperature. Int Comm Heat Mass Transfer 31:751–762

    Article  Google Scholar 

  26. Zueco J, Anwar Bég O (2009) Network simulation solutions for laminar radiating dissipative magneto-gas dynamic heat transfer over a wedge in non-Darcian porous regime. Math Comput Model 50:439–452

    Article  MathSciNet  MATH  Google Scholar 

  27. Verruijt A (1982) Groundwater Flow, 2nd edn. Macmillan Press, UK

    Book  Google Scholar 

  28. Steck R, Niederer P, Knothe Tate ML (2003) Fluid flows through anisotropic poroelastic bone models in the opposite direction to that through analogous isotropic models, Summer Bioengineering Conf., June 25–29, Key Biscayne, Florida, USA

  29. Cheng AHD (1997) Material coefficients of anisotropic poroelasticity. Int J Rock Mech Mining Sci 34:199–205

    Article  Google Scholar 

  30. Ece MC (2006) Free convection flow about a vertical spinning cone under a magnetic field. Appl Math Comput 179:231–242

    MathSciNet  MATH  Google Scholar 

  31. Bég O, Anwar HS, Takhar R, Bharagava, Rawat S, Prasad VR (2008) Numerical study of heat transfer of a third grade viscoelastic fluid in non-Darcian porous media with thermophysical effects. Phys Scr 77:1–11

    Google Scholar 

  32. Network Simulation Method Solutions, Anwar Bég O, Takhar HS, Joaquín Z, Sajid A, Bhargava R (2008) Transient Couette flow in a rotating non-Darcian porous medium parallel plate configuration. Acta Mech 200:129–144

    Article  MATH  Google Scholar 

  33. Anwar Bég O, Bakier AY, Prasad VR (2009) Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects. Comput Mater Sci 46(1):57–65

    Article  Google Scholar 

  34. Mohiddin SG, Prasad VR, Varma SVK, Anwar Bég O (2010) Numerical study of unsteady free convective heat and mass transfer in a Walters-B viscoelastic flow along a vertical cone. Int. J. Applied Mathematics and Mechanics 6:88–114

  35. Keller HB (1978) Numerical methods in boundary-layer theory. Annu Rev Fluid Mech 10:417–433

    Article  MathSciNet  Google Scholar 

  36. Kumar P, Sambath Narayanan P, Raut S (1987) Laminar boundary layers with vectored mass transfer. Int J Eng Sci 25:1503–1509

    Article  MATH  Google Scholar 

  37. Daskalakis JE (1993) Mixed free and forced convection in the incompressible boundary layer along a rotating vertical cylinder with fluid injection. Int. J. Energy Research 17:689–695

    Article  Google Scholar 

  38. Yih KA (1999) MHD forced convection flow adjacent to a non-isothermal wedge. Int Comm Heat Mass Transfer 26:819–827

    Article  Google Scholar 

  39. Anwar Bég O, Tasveer Bég A, Takhar HS, Raptis A (2004) Mathematical and numerical modeling of non-Newtonian thermo-hydrodynamic flow in non-Darcy porous media. Int J Fluid Mech Res 31:1–12

    Article  MathSciNet  Google Scholar 

  40. Vasu B, Prasad VR, Anwar Bég O, Aziz A, Prashad RD (2010) Numerical analysis of magnetohydrodynamic nonlinear convection heat and mass transfer from a sphere in a non-Darcian variable-porosity medium. Int J Appl Math Mech 6:64–111

  41. Prasad VR, Gaffar SA, Anwar Bég O (2014) Heat and mass transfer of a nanofluid from a horizontal cylinder to a micropolar fluid. AIAA J Thermophys Heat Transfer 13 pages. doi:10.2514/1.T4396

  42. Prasad VR, Abdul Gaffar S, Keshava Reddy E, Anwar Bég O (2014) Computational study of non-Newtonian thermal convection from a vertical porous plate in a non-Darcy porous medium with Biot number effects. J Porous Media 17(7)

  43. Abdul Gaffar S, Prasad VR, Anwar Bég O (2014) Flow and heat transfer of Jeffreys non-Newtonian fluid from a horizontal circular cylinder. AIAA J. Thermophys Heat Transfer. doi:10.2514/1.T4253

  44. Prasad VR, Abdul Gaffar S, Keshava Reddy E, Anwar Bég O (2014) Numerical study of non-Newtonian boundary layer flow of Jeffreys fluid past a vertical porous plate in a non-Darcy porous medium. Int J Comp Meth Eng Sci Mech 15(4):372–389

    Article  MathSciNet  Google Scholar 

  45. Rossow VJ (1958) On the flow of electrically-conducting fluids over a flat plate in the presence of a transverse magnetic field, vol 1358. NACA Report, USA

    Google Scholar 

  46. Cramer KC (1963) Several magnetohydrodynamic free convection solutions. ASME J Heat Transfer 26:35–40

    Article  Google Scholar 

  47. Chang TB, Mehmood A, Anwar Bég O, Narahari M, Islam MN, Ameen F (2011) Numerical study of transient free convective mass transfer in a Walters-B viscoelastic flow with wall suction. Communications in Nonlinear Science and Numerical Simulation 16(1):216–225

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to both the reviewers for their careful appraisals of the work which have served to improve the clarity and quality of the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Anwar Bég.

Additional information

Technical Editor: Jader Barbosa Jr.

Appendix 1: Keller Box scheme

Appendix 1: Keller Box scheme

A two-dimensional computational grid is imposed on the transformed boundary layer domain as shown in Fig 17. Note that since only one independent variable (Y) is employed, the streamwise variable (X) is not discredited in the numerical computations.

Fig. 17
figure 17

“Keller Box” computational cell for finite difference approximation

The numerical stepping process is defined only for the Y co-ordinate by:

$$ y_{0} = \, 0; \, y_{j} = \, y_{j - 1} + \, h_{j} ,\quad j \, = \, 1,2 \ldots J, $$
(23)

where h j denotes the step distance in the y-direction. Denoting Σ as the value of any variable at station y j , the following central difference approximations are substituted for each reduced variable and their first order derivatives, viz:

$$ (\varSigma)_{{j \, {-} \, \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} }}^{n - 1/2} = \, [\varSigma^{n}_{j} + \varSigma^{n}_{j - 1} + \varSigma^{n - 1}_{j} + \varSigma^{n - 1}_{j - 1} ]/4, $$
(24)
$$ (\partial \varSigma /\partial y)_{{j \, {-} \, \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} }}^{n - 1/2} = \, [\varSigma ^{n}_{j} + \varSigma ^{n}_{j - 1} - \varSigma ^{n - 1}_{j} - \varSigma ^{n - 1}_{j - 1} ]/4h_{j} , $$
(25)

where h j = spanwise stepping distance (y-mesh spacing) defined as follows:

$$ y_{j - 1/2} = \, \left[ {y_{j} + \, y_{j - 1} } \right]/2. $$
(26)

Phase a) reduction of the Nth order partial differential equation system to N X first-order equations

Equations (30)–(32) subject to the boundary conditions (35) constitute a seventh-order well-posed two-point boundary value problem. Equations (30)–(32) are first written as a system of seven first-order equations. For this purpose, we introduce new dependent variables u(y), v(y), t(y) and p(y). Therefore, we obtain the following seven first-order equations:

$$ F^{\prime} = u, $$
(26)
$$ u^{\prime} = v, $$
(28)
$$ G^{\prime} = t, $$
(29)
$$ H^{\prime} = p, $$
(30)
$$ v^{\prime} + 2Fv - u^{2} - \left( {\frac{1}{{\kappa_{x} }} + Nm} \right)u + \varepsilon G^{2} + H = 0, $$
(31)
$$ t^{\prime} + 2Ft - 2uG - \left( {\frac{1}{{\kappa_{\theta } }} + Nm} \right)G = 0, $$
(32)
$$ \frac{1}{\Pr }p^{\prime} + 2Fp - uH = 0, $$
(33)

where primes denote differentiation with respect to y. In terms of the dependent variables, the boundary conditions become:

$$ \begin{aligned} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,F = 0,\,\,\,\,\,\,\,\,u = 0,\,\,\,\,\,\,\,\,G = 1,\,\,\,\,\,\,H = 1\,\,\,at\,\,\,\,\,y = 0, \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,u \to 0,\,\,\,\,\,\,G \to 0,\,\,\,\,\,\,H \to 0\,\,\,\,\,as\,\,\,\,\,y \to \infty \,. \hfill \\ \end{aligned} $$
(34)

Phase b) finite difference discretization

The net points are denoted by:

$$ y_{{^{0} }} = 0,\,\,\,\,\,\,\,\,\,\,\,\,y_{{^{j} }} = y_{{^{j - 1} }} + h_{j} ,\,\,\,\,\,\,\,j = 1,2, \ldots J,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y_{J} \equiv y_{\infty } , $$
(35)

where \( h_{j} \) is the \( \Delta y - \)spacing. Here, j is just the sequence number that indicates the co-ordinate location. We approximate the quantities (F, u, v, G, t, H, p) at points \( (y_{j} ) \) of the net by \( (F_{j}^{n} ,\,u_{j}^{n} ,\,v_{j}^{n} ,\,G_{j}^{n} ,\,t_{j}^{n} ,H_{j}^{n} ,p_{j}^{n} ) \), which we denote as net functions. We also employ the notion \( (\,\,)_{j}^{n} \) for points and quantities midway between net points and for any net function:

$$ \,\,y_{{^{j - 1/2} }} \equiv \frac{1}{2}\left( {y_{j} + y_{j - 1} } \right),\left( {} \right)_{j}^{n - 1/2} = \frac{1}{2}\left[ {\left( {} \right)_{j}^{n} + \left( {} \right)_{j}^{n - 1} } \right]\,\,\,and\,\,\left( {} \right)_{j - 1/2}^{n} = \frac{1}{2}\left[ {\left( {} \right)_{j}^{n} + \left( {} \right)_{j - 1}^{n} } \right]\,. $$
(36)

We start by writing the finite difference approximations of the ordinary differential equations (27–30) using centered-difference derivatives. This process is called “centering about \( (y_{j - 1/2} ) \)”. This gives:

$$ \frac{{\left( {F_{j}^{n} - F_{j - 1}^{n} } \right)}}{{h_{j} }} = \frac{1}{2}\left( {u_{j}^{n} + u_{j - 1}^{n} } \right) = u_{j - 1/2}^{n} , $$
(37)
$$ \frac{{\left( {u_{j}^{n} - u_{j - 1}^{n} } \right)}}{{h_{j} }} = \frac{1}{2}\left( {v_{j}^{n} + v_{j - 1}^{n} } \right) = v_{j - 1/2}^{n} , $$
(38)
$$ \frac{{\left( {G_{j}^{n} - G_{j - 1}^{n} } \right)}}{{h_{j} }} = \frac{1}{2}\left( {t_{j}^{n} + t_{j - 1}^{n} } \right) = t_{j - 1/2}^{n} , $$
(39)
$$ \frac{{\left( {H_{j}^{n} - H_{j - 1}^{n} } \right)}}{{h_{j} }} = \frac{1}{2}\left( {p_{j}^{n} + p_{j - 1}^{n} } \right) = p_{j - 1/2}^{n} , $$
(40)

The differential equations (31)–(33) take the form:

$$ \begin{aligned} \left( {v^{\prime}} \right)^{n} + 2\left( {Fv} \right)^{n} - \left( {u^{2} } \right)^{n} - \left( {\frac{1}{{\kappa_{x} }} + Nm} \right)u^{n} + \varepsilon \left( {G^{2} } \right)^{n} + H^{n} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - \left[ {} \right.\left( {v^{\prime}} \right) + 2\left( {Fv} \right) - \left( {u^{2} } \right) - \left( {\frac{1}{{\kappa_{x} }} + Nm} \right)u + \varepsilon \left( {G^{2} } \right) + H\left. {} \right]^{n - 1} , \hfill \\ \end{aligned} $$
(41)
$$ \left( {t^{\prime}} \right)^{n} + 2\left( {Ft} \right)^{n} - 2\left( {uG} \right)^{n} - \left( {\frac{1}{{\kappa_{\theta } }} + Nm} \right)G^{n} \,\, = - \left[ {\left( {t^{\prime}} \right) + 2\left( {Ft} \right) - 2\left( {uG} \right) - \left( {\frac{1}{{\kappa_{\theta } }} + Nm} \right)G} \right]^{n - 1} , $$
(42)
$$ \frac{1}{\Pr }\left( {p^{\prime}} \right)^{n} + 2\left( {Fp} \right)^{n} - \left( {uH} \right)^{n} \,\, = \left[ {\frac{1}{\Pr }\left( {p^{\prime}} \right) + 2\left( {Fp} \right) - \left( {uH} \right)\,} \right]^{n - 1} , $$
(43)

where the notation \( \left[ {} \right]^{n - 1} \) corresponds to quantities in the square bracket evaluated at \( y = y^{n - 1} \). Discretization gives:

$$ \begin{aligned} \left( {\frac{{v_{j}^{n} - v_{j - 1}^{n} }}{{h_{j} }}} \right) + 2\left( {F_{j - 1/2}^{n} v_{j - 1/2}^{n} } \right) - \left( {u_{j - 1/2}^{n} } \right)^{2} - \left( {\frac{1}{{\kappa_{x} }} + Nm} \right)u_{j - 1/2}^{n} + \varepsilon \left( {G_{j - 1/2}^{n} } \right)^{2} + H_{j - 1/2}^{n} \hfill \\ \,\,\, = \,\, - \left[ {\left( {\frac{{v_{j}^{n - 1} - v_{j - 1}^{n - 1} }}{{h_{j} }}} \right) + 2\left( {F_{j - 1/2}^{n - 1} v_{j - 1/2}^{n - 1} } \right) - \left( {u_{j - 1/2}^{n - 1} } \right)^{2} - \left( {\frac{1}{{\kappa_{x} }} + Nm} \right)u_{j - 1/2}^{n - 1} + \varepsilon \left( {G_{j - 1/2}^{n - 1} } \right)^{2} + H_{j - 1/2}^{n - 1} } \right], \hfill \\ \end{aligned} $$
(44)
$$ \begin{aligned} \left( {\frac{{t_{j}^{n} - t_{j - 1}^{n} }}{{h_{j} }}} \right) + 2\left( {F_{j - 1/2}^{n} t_{j - 1/2}^{n} } \right) - 2\left( {u_{j - 1/2}^{n} G_{j - 1/2}^{n} } \right) - \left( {\frac{1}{{\kappa_{\theta } }} + Nm} \right)G_{j - 1/2}^{n} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - \left[ {\left( {\frac{{t_{j}^{n - 1} - t_{j - 1}^{n - 1} }}{{h_{j} }}} \right) + 2\left( {F_{j - 1/2}^{n - 1} t_{j - 1/2}^{n - 1} } \right) - 2\left( {u_{j - 1/2}^{n - 1} G_{j - 1/2}^{n - 1} } \right) - \left( {\frac{1}{{\kappa_{\theta } }} + Nm} \right)G_{j - 1/2}^{n - 1} } \right], \hfill \\ \end{aligned} $$
(45)
$$ \begin{aligned} \frac{1}{\Pr }\left( {\frac{{p_{j}^{n} - p_{j - 1}^{n} }}{{h_{j} }}} \right) + 2\left( {F_{j - 1/2}^{n} p_{j - 1/2}^{n} } \right) - \left( {u_{j - 1/2}^{n} H_{j - 1/2}^{n} } \right) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - \left[ {\frac{1}{\Pr }\left( {\frac{{p_{j}^{n - 1} - p_{j - 1}^{n - 1} }}{{h_{j} }}} \right) + 2\left( {F_{j - 1/2}^{n - 1} p_{j - 1/2}^{n - 1} } \right) - \left( {u_{j - 1/2}^{n - 1} H_{j - 1/2}^{n - 1} } \right)} \right]. \hfill \\ \end{aligned} $$
(46)

Equations (A21) and (A23) are imposed for j= 1, 2… J at given n, and the transformed boundary layer thickness,\( y_{J} \) is to be sufficiently large so that it is beyond the edge of the boundary layer.

$$ F_{0}^{n} = u_{0}^{n} = 0,\,\,\,\,\,\,\,\,\,G_{0}^{n} = 1,\,\,\,\,\,\,\,\,\,\,H_{0}^{n} = 1,\,\,\,\,\,\,\,\,\,\,u_{J}^{n} = 0,\,\,\,\,\,\,\,\,\,\,G_{J}^{n} = 0,\,\,\,\,\,\,\,\,\,\,H_{J}^{n} = 0. $$
(47)

Phase c) quasi-linearization of nonlinear Keller algebraic equations

Newton’s method is then employed to quasi-linearize the equations (A21) to (A23). If we assume \( (F_{j}^{n - 1} ,\,u_{j}^{n - 1} ,\,v_{j}^{n - 1} ,\,G_{j}^{n - 1} ,\,t_{j}^{n - 1} ,H_{j}^{n - 1} ,p_{j}^{n - 1} ) \) to be known for \( 0 \le j \le J \), then Eqs. (A14)–(A17) and (A21)–(A23) with (A24) are a system of equations for the solution of the unknowns \( (F_{j}^{n} ,\,u_{j}^{n} ,\,v_{j}^{n} ,\,G_{j}^{n} ,\,t_{j}^{n} ,H_{j}^{n} ,p_{j}^{n} ) \), j = 0, 1, 2,…J. For simplicity of notation, we shall write the unknowns at \( y = y^{n} \) as:

$$ (F_{j}^{n} ,\,u_{j}^{n} ,\,v_{j}^{n} ,\,G_{j}^{n} ,\,t_{j}^{n} ,H_{j}^{n} ,p_{j}^{n} ) \equiv (F_{j}^{{}} ,\,u_{j}^{{}} ,\,v_{j}^{{}} ,\,G_{j}^{{}} ,\,t_{j}^{{}} ,H_{j}^{{}} ,p_{j}^{{}} ). $$
(48)

Then the system of equations considered then reduces to (after multiplying with\( h_{j} \)):

$$ F_{j}^{{}} - F_{j - 1}^{{}} - \frac{{h_{j} }}{2}\left( {u_{j}^{{}} + u_{j - 1}^{{}} } \right) = 0, $$
(49)
$$ u_{j}^{{}} - u_{j - 1}^{{}} - \frac{{h_{j} }}{2}\left( {v_{j}^{{}} + v_{j - 1}^{{}} } \right) = 0, $$
(50)
$$ G_{j}^{{}} - G_{j - 1}^{{}} - \frac{{h_{j} }}{2}\left( {t_{j}^{{}} + t_{j - 1}^{{}} } \right) = 0, $$
(51)
$$ H_{j}^{{}} - H_{j - 1}^{{}} - \frac{{h_{j} }}{2}\left( {p_{j}^{{}} + p_{j - 1}^{{}} } \right) = 0, $$
(52)
$$ \begin{aligned} \left( {v_{j} - v_{j - 1} } \right) + \frac{{h_{j} }}{2}\left[ {\left( {F_{j} + F_{j - 1} } \right)\left( {v_{j} + v_{j - 1} } \right)} \right] - \frac{{h_{j} }}{4}\left( {u_{j} + u_{j - 1} } \right)^{2} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \frac{{h_{j} }}{2}\left( {\frac{1}{{\kappa_{x} }} + Nm} \right)\left( {u_{j} + u_{j - 1} } \right) + \frac{{\varepsilon h_{j} }}{4}\left( {G_{j} + G_{j - 1} } \right)^{2} + \frac{{h_{j} }}{2}\left( {H_{j} + H_{j - 1} } \right) = \left[ {R_{1} } \right]_{j - 1/2}^{n - 1} , \hfill \\ \end{aligned} $$
(53)
$$ \begin{aligned} \left( {t_{j} - t_{j - 1} } \right) + \frac{{h_{j} }}{2}\left[ {\left( {F_{j} + F_{j - 1} } \right)\left( {t_{j} + t_{j - 1} } \right)} \right] - \frac{{h_{j} }}{2}\left[ {\left( {u_{j} + u_{j - 1} } \right)\left( {G_{j} + G_{j - 1} } \right)} \right] \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \left( {\frac{1}{{\kappa_{\theta } }} + Nm} \right)\frac{{h_{j} }}{2}\left( {u_{j} + u_{j - 1} } \right) = \left[ {R_{2} } \right]_{j - 1/2}^{n - 1} , \hfill \\ \end{aligned} $$
(54)
$$ \frac{1}{\Pr }\left( {p_{j} - p_{j - 1} } \right) + \frac{{h_{j} }}{2}\left[ {\left( {F_{j} + F_{j - 1} } \right)\left( {p_{j} + p_{j - 1} } \right)} \right] - \frac{{h_{j} }}{4}\left[ {\left( {u_{j} + u_{j - 1} } \right)\left( {H_{j} + H_{j - 1} } \right)} \right] = \left[ {R_{3} } \right]_{j - 1/2}^{n - 1} , $$
(55)

where:

$$ \left[ {R_{1} } \right]_{j - 1/2}^{n - 1} = - h_{j} \left[ {\left( {\frac{{v_{j}^{{}} - v_{j - 1}^{{}} }}{{h_{j} }}} \right) + 2\left( {F_{j - 1/2}^{{}} v_{j - 1/2}^{{}} } \right) - \left( {u_{j - 1/2}^{{}} } \right)^{2} - \left( {\frac{1}{{\kappa_{x} }} + Nm} \right)u_{j - 1/2}^{{}} + \varepsilon \left( {G_{j - 1/2}^{{}} } \right)^{2} + H_{j - 1/2}^{{}} } \right], $$
(56)
$$ \left[ {R_{2} } \right]_{j - 1/2}^{n - 1} = - h_{j} \left[ {\left( {\frac{{t_{j}^{{}} - t_{j - 1}^{{}} }}{{h_{j} }}} \right) + 2\left( {F_{j - 1/2}^{{}} t_{j - 1/2}^{{}} } \right) - 2\left( {u_{j - 1/2}^{{}} G_{j - 1/2}^{{}} } \right) - \left( {\frac{1}{{\kappa_{\theta } }} + Nm} \right)G_{j - 1/2}^{{}} } \right], $$
(57)
$$ \left[ {R_{3} } \right]_{j - 1/2}^{n - 1} = - h_{j} \left[ {\frac{1}{\Pr }\left( {\frac{{p_{j}^{{}} - p_{j - 1}^{{}} }}{{h_{j} }}} \right) + 2\left( {F_{j - 1/2}^{{}} p_{j - 1/2}^{{}} } \right) - \left( {u_{j - 1/2}^{{}} H_{j - 1/2}^{{}} } \right)} \right], $$
(58)

\( \left[ {R_{1} } \right]_{j - 1/2}^{n - 1} \), \( \left[ {R_{2} } \right]_{j - 1/2}^{n - 1} \) and \( \left[ {R_{3} } \right]_{j - 1/2}^{n - 1} \) involve only know quantities if we assume that the solution is known for \( y = y^{n - 1} \). To linearize the nonlinear system of equations (A26) to (A32) using Newton’s method, we introduce the following iterates:

$$ \begin{aligned} F_{j}^{{\left( {i + 1} \right)}} = F_{j}^{\left( i \right)} + \delta F_{j}^{\left( i \right)} ,\,\,\,\,\,\,\,\,\,\,\,u_{j}^{{\left( {i + 1} \right)}} = u_{j}^{\left( i \right)} + \delta u_{j}^{\left( i \right)} ,\,\,\,\,\,\,\,\,\,\,\,v_{j}^{{\left( {i + 1} \right)}} = v_{j}^{\left( i \right)} + \delta v_{j}^{\left( i \right)} , \hfill \\ G_{j}^{{\left( {i + 1} \right)}} = G_{j}^{\left( i \right)} + \delta G_{j}^{\left( i \right)} ,\,\,\,\,\,\,\,\,\,\,\,t_{j}^{{\left( {i + 1} \right)}} = t_{j}^{\left( i \right)} + \delta t_{j}^{\left( i \right)} , \hfill \\ H_{j}^{{\left( {i + 1} \right)}} = H_{j}^{\left( i \right)} + \delta H_{j}^{\left( i \right)} ,\,\,\,\,\,\,\,\,\,p_{j}^{{\left( {i + 1} \right)}} = p_{j}^{\left( i \right)} + \delta p_{j}^{\left( i \right)} . \hfill \\ \end{aligned} $$
(59)

Then we substitute these expressions into equations (A26)–(A32) except for the term, \( y^{n - 1} \), and this yields:

$$ \left( {F_{j}^{\left( i \right)} + \delta F_{j}^{\left( i \right)} } \right) - \left( {F_{j - 1}^{\left( i \right)} + \delta F_{j - 1}^{\left( i \right)} } \right) - \frac{{h_{j} }}{2}\left( {u_{j}^{\left( i \right)} + \delta u_{j}^{\left( i \right)} + u_{j - 1}^{\left( i \right)} + \delta u_{j - 1}^{\left( i \right)} } \right) = 0, $$
(60)
$$ \left( {u_{j}^{\left( i \right)} + \delta u_{j}^{\left( i \right)} } \right) - \left( {u_{j - 1}^{\left( i \right)} + \delta u_{j - 1}^{\left( i \right)} } \right) - \frac{{h_{j} }}{2}\left( {v_{j}^{\left( i \right)} + \delta v_{j}^{\left( i \right)} + v_{j - 1}^{\left( i \right)} + \delta v_{j - 1}^{\left( i \right)} } \right) = 0, $$
(61)
$$ \left( {G_{j}^{\left( i \right)} + \delta G_{j}^{\left( i \right)} } \right) - \left( {G_{j - 1}^{\left( i \right)} + \delta g_{j - 1}^{\left( i \right)} } \right) - \frac{{h_{j} }}{2}\left( {t_{j}^{\left( i \right)} + \delta t_{j}^{\left( i \right)} + t_{j - 1}^{\left( i \right)} + \delta t_{j - 1}^{\left( i \right)} } \right) = 0, $$
(62)
$$ \left( {H_{j}^{\left( i \right)} + \delta H_{j}^{\left( i \right)} } \right) - \left( {H_{j - 1}^{\left( i \right)} + \delta H_{j - 1}^{\left( i \right)} } \right) - \frac{{h_{j} }}{2}\left( {p_{j}^{\left( i \right)} + \delta p_{j}^{\left( i \right)} + p_{j - 1}^{\left( i \right)} + \delta p_{j - 1}^{\left( i \right)} } \right) = 0, $$
(63)
$$ \begin{aligned} \left[ {\left( {v_{j}^{(i)} + \delta v_{j}^{(i)} } \right) - \left( {v_{j - 1}^{(i)} + \delta v_{j - 1}^{(i)} } \right)} \right] + \frac{{h_{j} }}{2}\left[ {\left( {F_{j}^{(i)} + \delta F_{j}^{(i)} + F_{j - 1}^{(i)} + \delta F_{j - 1}^{(i)} } \right)\left( {v_{j}^{(i)} + \delta v_{j}^{(i)} + v_{j - 1}^{(i)} + \delta v_{j - 1}^{(i)} } \right)} \right] \hfill \\ \,\,\,\,\,\,\,\, - \frac{{h_{j} }}{4}\left( {u_{j}^{(i)} + \delta u_{j}^{(i)} + u_{j - 1}^{(i)} + \delta u_{j - 1}^{(i)} } \right)^{2} - \frac{{h_{j} }}{2}\left( {\frac{1}{{\kappa_{x} }} + Nm} \right)\left( {u_{j}^{(i)} + \delta u_{j}^{(i)} + u_{j - 1}^{(i)} + \delta u_{j - 1}^{(i)} } \right) \hfill \\ \,\,\,\,\,\,\, + \frac{{\varepsilon h_{j} }}{4}\left( {G_{j}^{(i)} + \delta G_{j}^{(i)} + G_{j - 1}^{(i)} + \delta G_{j - 1}^{(i)} } \right)^{2} + \frac{{h_{j} }}{2}\left( {H_{j}^{(i)} + \delta H_{j}^{(i)} + H_{j - 1}^{(i)} + \delta H_{j - 1}^{(i)} } \right) = \left[ {R_{1} } \right]_{j - 1/2}^{n - 1} , \hfill \\ \end{aligned} $$
(64)
$$ \begin{aligned} \left[ {\left( {t_{j}^{(i)} + \delta t_{j}^{(i)} } \right) - \left( {t_{j - 1}^{(i)} + \delta t_{j - 1}^{(i)} } \right)} \right] + \frac{{h_{j} }}{2}\left[ {\left( {F_{j}^{(i)} + \delta F_{j}^{(i)} + F_{j - 1}^{(i)} + \delta F_{j - 1}^{(i)} } \right)\left( {t_{j}^{(i)} + \delta t_{j}^{(i)} + t_{j - 1}^{(i)} + \delta t_{j - 1}^{(i)} } \right)} \right] \hfill \\ \,\,\,\,\,\,\, - \frac{{h_{j} }}{2}\left[ {\left( {u_{j}^{(i)} + \delta u_{j}^{(i)} + u_{j - 1}^{(i)} + \delta u_{j - 1}^{(i)} } \right)\left( {G_{j}^{(i)} + \delta G_{j}^{(i)} + G_{j - 1}^{(i)} + \delta G_{j - 1}^{(i)} } \right)} \right] \hfill \\ \,\,\,\,\,\,\,\, - \left( {\frac{1}{{\kappa_{\theta } }} + Nm} \right)\frac{{h_{j} }}{2}\left( {G_{j}^{(i)} + \delta G_{j}^{(i)} + G_{j - 1}^{(i)} + \delta G_{j - 1}^{(i)} } \right) = \left[ {R_{2} } \right]_{j - 1/2}^{n - 1} ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( { 4 9 {\text{f}}} \right) \hfill \\ \end{aligned} $$
(65)
$$ \begin{aligned} \frac{1}{\Pr }\left[ {\left( {p_{j}^{(i)} + \delta p_{j}^{(i)} } \right) - \left( {p_{j - 1}^{(i)} + \delta p_{j - 1}^{(i)} } \right)} \right] + \frac{{h_{j} }}{2}\left[ {\left( {F_{j}^{(i)} + \delta F_{j}^{(i)} + F_{j - 1}^{(i)} + \delta F_{j - 1}^{(i)} } \right)\left( {p_{j}^{(i)} + \delta p_{j}^{(i)} + p_{j - 1}^{(i)} + \delta p_{j - 1}^{(i)} } \right)} \right] \hfill \\ \,\,\,\,\,\,\, - \frac{{h_{j} }}{4}\left[ {\left( {u_{j}^{(i)} + \delta u_{j}^{(i)} + u_{j - 1}^{(i)} + \delta u_{j - 1}^{(i)} } \right)\left( {H_{j}^{(i)} + \delta H_{j}^{(i)} + H_{j - 1}^{(i)} + \delta H_{j - 1}^{(i)} } \right)} \right]\,\, = \left[ {R_{3} } \right]_{j - 1/2}^{n - 1} . \hfill \\ \end{aligned} $$
(66)

Next, we drop the terms that are quadratic in the following: \( \left( {\delta F_{j}^{(i)} ,\,\delta u_{j}^{(i)} ,\,\delta v_{j}^{(i)} ,\,\delta G_{j}^{(i)} ,\,\delta t_{j}^{(i)} ,\,\delta H_{j}^{(i)} ,\,\delta p_{j}^{(i)} } \right) \). We also drop the superscript I for simplicity. After some algebraic manipulations, the following linear tridiagonal system of equations is obtained:

$$ \delta F_{j}^{{}} - \delta F_{j - 1}^{{}} - \frac{{h_{j} }}{2}\left( {\delta u_{j}^{{}} + \delta u_{j - 1}^{{}} } \right) = (r_{1} )_{j - 1/2} , $$
(67)
$$ \delta u_{j}^{{}} - \delta u_{j - 1}^{{}} - \frac{{h_{j} }}{2}\left( {\delta v_{j}^{{}} + \delta v_{j - 1}^{{}} } \right) = (r_{2} )_{j - 1/2} , $$
(68)
$$ \delta G_{j}^{{}} - \delta G_{j - 1}^{{}} - \frac{{h_{j} }}{2}\left( {\delta t_{j}^{{}} + \delta t_{j - 1}^{{}} } \right) = (r_{3} )_{j - 1/2} , $$
(69)
$$ \delta H_{j}^{{}} - \delta H_{j - 1}^{{}} - \frac{{h_{j} }}{2}\left( {\delta t_{j}^{{}} + \delta t_{j - 1}^{{}} } \right) = (r_{4} )_{j - 1/2} , $$
(70)
$$ \begin{aligned} (a_{1} )_{j} \delta v_{j}^{{}} + (a_{2} )_{j} \delta v_{j - 1}^{{}} + (a_{3} )_{j} \delta F_{j}^{{}} + (a_{4} )_{j} \delta F_{j - 1}^{{}} + (a_{5} )_{j} \delta u_{j}^{{}} + (a_{6} )_{j} \delta u_{j - 1}^{{}} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + (a_{7} )_{j} \delta G_{j}^{{}} + (a_{8} )_{j} \delta G_{j - 1}^{{}} + (a_{9} )_{j} \delta H_{j}^{{}} + (a_{10} )_{j} \delta H_{j - 1}^{{}} = (r_{5} )_{j - 1/2} , \hfill \\ \end{aligned} $$
(71)
$$ \begin{aligned} (b_{1} )_{j} \delta t_{j}^{{}} + (b_{2} )_{j} \delta t_{j - 1}^{{}} + (b_{3} )_{j} \delta F_{j}^{{}} + (b_{4} )_{j} \delta F_{j - 1}^{{}} + (b_{5} )_{j} \delta u_{j}^{{}} + (b_{6} )_{j} \delta u_{j - 1}^{{}} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + (b_{7} )_{j} \delta G_{j}^{{}} + (b_{8} )_{j} \delta G_{j - 1}^{{}} = (r_{6} )_{j - 1/2} , \hfill \\ \end{aligned} $$
(72)
$$ \begin{aligned} (c_{1} )_{j} \delta p_{j}^{{}} + (c_{2} )_{j} \delta p_{j - 1}^{{}} + (c_{3} )_{j} \delta F_{j}^{{}} + (c_{4} )_{j} \delta F_{j - 1}^{{}} + (c_{5} )_{j} \delta u_{j}^{{}} + (c_{6} )_{j} \delta u_{j - 1}^{{}} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + (c_{7} )_{j} \delta H_{j}^{{}} + (c_{8} )_{j} \delta H_{j - 1}^{{}} = (r_{7} )_{j - 1/2} , \hfill \\ \end{aligned} $$
(73)

where:

$$ \begin{aligned} (a_{1} )_{j} = 1 + h_{j} F_{j - 1/2} ,\,\,\,\,\,\,(a_{2} )_{j} = - 1 + h_{j} F_{j - 1/2} , \hfill \\ (a_{3} )_{j} = h_{j} v_{j - 1/2} ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(a_{4} )_{j} = (a_{3} )_{j} , \hfill \\ (a_{5} )_{j} = h_{j} \left[ {u_{j - 1/2} - \frac{1}{2}\left( {\frac{1}{{\kappa_{x} }} + Nm} \right)} \right],\,\,\,\,\,\,\,\,\,\,\,\,\,(a_{6} )_{j} = (a_{5} )_{j} ,(a_{7} )_{j} = \varepsilon h_{j} G_{j - 1/2} ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(a_{8} )_{j} = (a_{7} )_{j} ,(a_{9} )_{j} = \frac{1}{2}h_{j} ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(a_{10} )_{j} = (a_{9} )_{j} , \hfill \\ \end{aligned} $$
(74)
$$ \begin{aligned} (b_{1} )_{j} &= 1 + h_{j} F_{j - 1/2} ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(b_{2} )_{j} = - 1 + h_{j} F_{j - 1/2} , \hfill \\ (b_{3} )_{j} &= h_{j} t_{j - 1/2} ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(b_{4} )_{j} = (b_{3} )_{j} , \hfill \\ (b_{5} )_{j} &= - h_{j} G_{j - 1/2} ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(b_{6} )_{j} = (b_{5} )_{j} , \hfill \\ (b_{7} )_{j} &= h_{j} \left[ { - u_{j - 1/2} - \frac{1}{2}\left( {\frac{1}{{\kappa_{\theta } }} + Nm} \right)} \right],\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(b_{8} )_{j} = (b_{7} )_{j} , \hfill \\ \end{aligned} $$
(75)
$$ \begin{aligned} (c_{1} )_{j} &= \frac{1}{\Pr } + h_{j} F_{j - 1/2} ,\,\quad (c_{2} )_{j} = - \frac{1}{\Pr } + h_{j} F_{j - 1/2} , \hfill \\ (c_{3} )_{j} &= h_{j} p_{j - 1/2} ,\,\quad (c_{4} )_{j} = (c_{3} )_{j} , \hfill \\ (c_{5} )_{j} &= - \frac{{h_{j} }}{2}H_{j - 1/2} ,\,\,\quad (c_{6} )_{j} = (c_{5} )_{j} ,\quad (c_{7} )_{j} = - \frac{{h_{j} }}{2}u_{j - 1/2} ,\,\,\quad \,(c_{8} )_{j} = (c_{7} )_{j} , \hfill \\ \end{aligned} $$
(76)
$$ \begin{aligned} \left( {r_{1} } \right)_{j - 1/2} &= F_{j - 1} - F_{j} + h_{j} u_{j - 1/2} ,\,\,\,\left( {r_{2} } \right)_{j - 1/2} &= u_{j - 1} - u_{j} + h_{j} v_{j - 1/2} , \hfill \\ \left( {r_{3} } \right)_{j - 1/2} &= G_{j - 1} - G_{j} + h_{j} t_{j - 1/2} ,\,\,\,\left( {r_{4} } \right)_{j - 1/2} = H_{j - 1} - H_{j} + h_{j} p_{j - 1/2} , \hfill \\ \left( {r_{5} } \right)_{j - 1/2} &= \left( {v_{j - 1} - v_{j} } \right) - 2h_{j} F_{j - 1/2} v_{j - 1/2} + h_{j} u_{j - 1/2}^{2} + \left( {\frac{1}{{\kappa_{x} }} + Nm} \right)h_{j} u_{j - 1/2} \hfill \\ &\quad - \varepsilon h_{j} G_{{_{j - 1/2} }}^{2} - h_{j} H_{j - 1/2} + \left[ {R_{1} } \right]_{j - 1/2}^{n - 1} , \hfill \\ \left( {r_{6} } \right)_{j - 1/2} &= \left( {t_{j - 1} - t_{j} } \right) - 2h_{j} F_{j - 1/2} t_{j - 1/2} + 2h_{j} u_{j - 1/2} G_{j - 1/2} + h_{j} \left( {\frac{1}{{\kappa_{\theta } }} + Nm} \right)G_{j - 1/2} + \left[ {R_{2} } \right]_{j - 1/2}^{n - 1} , \hfill \\ \left( {r_{7} } \right)_{j - 1/2} &= \frac{1}{\Pr }\left( {p_{j - 1} - p_{j} } \right) - 2h_{j} F_{j - 1/2} p_{j - 1/2} + h_{j} u_{j - 1/2} H_{j - 1/2} + \left[ {R_{3} } \right]_{j - 1/2}^{n - 1} . \hfill \\ \end{aligned} $$
(77)

To complete the system (A44)–(A50), we recall the boundary conditions (A24), which can be satisfied exactly with no iteration. Therefore to maintain these correct values in all the iterates, we take:

$$ \delta F_{0}^{{}} = 0,\,\,\,\,\,\delta u_{0}^{{}} = 0,\,\,\,\,\,\delta G_{0}^{{}} = 0,\,\,\,\,\,\delta H_{0}^{{}} = 0,\,\,\,\,\,\delta u_{J}^{{}} = 0,\,\,\,\,\,\delta G_{J}^{{}} = 0,\,\,\,\,\,\,\delta H_{J}^{{}} = 0. $$
(78)

Phase d) block-tridiagonal elimination of linear Keller algebraic equations

The linear system (A44)–(A50) can now be solved by the block-elimination method. The linearized difference equations of this system have a block-tridiagonal structure. Commonly, the block-tridiagonal structure consists of variables or constants; however, here, an interesting feature can be observed, that is, for the Keller Box method, it consists of block matrices. Intrinsic to the block-elimination method used in the Keller Box implicit finite difference method is the correct derivation of the elements of the block matrices from the linear system. We consider three cases, namely when j = 1, J − 1 and J. When j = 1, the linear system equations become:

$$ \delta F_{1}^{{}} - \delta F_{0}^{{}} - \frac{{h_{1} }}{2}\left( {\delta u_{1}^{{}} + \delta u_{0}^{{}} } \right) = (r_{1} )_{1 - 1/2} , $$
(79)
$$ \delta u_{1}^{{}} - \delta u_{0}^{{}} - \frac{{h_{j} }}{2}\left( {\delta v_{1}^{{}} + \delta v_{0}^{{}} } \right) = (r_{2} )_{1 - 1/2} , $$
(80)
$$ \delta G_{1}^{{}} - \delta G_{0}^{{}} - \frac{{h_{j} }}{2}\left( {\delta t_{1}^{{}} + \delta t_{0}^{{}} } \right) = (r_{3} )_{1 - 1/2} , $$
(81)
$$ \delta H_{1}^{{}} - \delta H_{0}^{{}} - \frac{{h_{j} }}{2}\left( {\delta p_{1}^{{}} + \delta p_{0}^{{}} } \right) = (r_{4} )_{1 - 1/2} , $$
(82)
$$ \begin{aligned} (a_{1} )_{1} \delta v_{1}^{{}} + (a_{2} )_{1} \delta v_{0}^{{}} + (a_{3} )_{1} \delta F_{1}^{{}} + (a_{4} )_{1} \delta F_{0}^{{}} + (a_{5} )_{1} \delta u_{1}^{{}} + (a_{6} )_{1} \delta u_{0}^{{}} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + (a_{7} )_{1} \delta G_{1}^{{}} + (a_{8} )_{1} \delta G_{0}^{{}} + (a_{9} )_{1} \delta H_{1}^{{}} + (a_{10} )_{1} \delta H_{0}^{{}} = (r_{5} )_{1 - 1/2} , \hfill \\ \end{aligned} $$
(83)
$$ \begin{aligned} (b_{1} )_{1} \delta t_{1}^{{}} + (b_{2} )_{1} \delta t_{0}^{{}} + (b_{3} )_{1} \delta F_{1}^{{}} + (b_{4} )_{1} \delta F_{0}^{{}} + (b_{5} )_{1} \delta u_{1}^{{}} + (b_{6} )_{1} \delta u_{0}^{{}} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + (b_{7} )_{1} \delta G_{1}^{{}} + (b_{8} )_{1} \delta G_{0}^{{}} = (r_{6} )_{1 - 1/2} , \hfill \\ \end{aligned} $$
(84)
$$ \begin{aligned} (c_{1} )_{1} \delta p_{1}^{{}} + (c_{2} )_{1} \delta p_{0}^{{}} + (c_{3} )_{1} \delta F_{1}^{{}} + (c_{4} )_{1} \delta F_{0}^{{}} + (c_{5} )_{1} \delta u_{1}^{{}} + (c_{6} )_{1} \delta u_{0}^{{}} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + (c_{7} )_{1} \delta H_{1}^{{}} + (c_{8} )_{1} \delta H_{0}^{{}} = (r_{7} )_{1 - 1/2} . \hfill \\ \end{aligned} $$
(85)

Designating \( d_{1} = - \frac{1}{2}h_{1} ,\,\,and\,\,\delta F_{0} = 0,\,\,\,\,\delta u_{0} = 0,\,\,\,\,\,\delta G_{0} = 0,\,\,\,\,\delta H_{0} = 0 \) to the corresponding matrix form we assume:

$$ \begin{aligned} \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ {d_{1} } & 0 & 0 & 0 & {d_{1} } & 0 & 0 \\ 0 & {d_{1} } & 0 & 0 & 0 & {d_{1} } & 0 \\ 0 & 0 & {d_{1} } & 0 & 0 & 0 & {d_{1} } \\ {\left( {a_{2} } \right)_{1} } & 0 & 0 & {\left( {a_{3} } \right)_{1} } & {\left( {a_{1} } \right)_{1} } & 0 & 0 \\ 0 & {\left( {b_{2} } \right)_{1} } & 0 & {\left( {b_{3} } \right)_{1} } & 0 & {\left( {b_{1} } \right)_{1} } & 0 \\ 0 & 0 & {\left( {c_{2} } \right)_{1} } & {\left( {c_{3} } \right)_{1} } & 0 & 0 & {\left( {c_{1} } \right)_{1} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\delta v_{0} } \\ {\delta t_{0} } \\ {\delta p_{0} } \\ {\delta F_{1} } \\ {\delta v_{1} } \\ {\delta t_{1} } \\ {\delta p_{1} } \\ \end{array} } \right] \hfill \\ + \left[ {\begin{array}{*{20}c} {d_{1} } & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ {\left( {a_{5} } \right)_{1} } & {\left( {a_{7} } \right)_{1} } & {\left( {a_{9} } \right)_{1} } & 0 & 0 & 0 & 0 \\ {\left( {b_{5} } \right)_{1} } & {\left( {b_{7} } \right)_{1} } & 0 & 0 & 0 & 0 & 0 \\ {\left( {c_{5} } \right)_{1} } & 0 & {\left( {c_{7} } \right)_{1} } & 0 & 0 & 0 & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\delta u_{1} } \\ {\delta G_{1} } \\ {\delta H_{1} } \\ {\delta F_{2} } \\ {\delta v_{2} } \\ {\delta t_{2} } \\ {\delta p_{2} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\left( {r_{1} } \right)_{1 - (1/2)} } \\ {\left( {r_{2} } \right)_{1 - (1/2)} } \\ {\left( {r_{3} } \right)_{1 - (1/2)} } \\ {\left( {r_{4} } \right)_{1 - (1/2)} } \\ {\left( {r_{5} } \right)_{1 - (1/2)} } \\ {\left( {r_{6} } \right)_{1 - (1/2)} } \\ {\left( {r_{7} } \right)_{1 - (1/2)} } \\ \end{array} } \right]. \hfill \\ \end{aligned} $$
(86)

For j = 1, we have \( \left[ {A_{1} } \right]\left[ {\delta_{1} } \right] + \left[ {C_{1} } \right]\left[ {\delta_{2} } \right] = \left[ {r_{1} } \right] \). Similar procedures are followed at the different stations. Effectively, the seven linearized finite difference equations have the matrix–vector form:

$$ \varLambda \delta_{j} = \zeta_{j} , $$
(87)

where Λ = Keller coefficient matrix of order 7 × 7, δ j = seventh-order vector for error (perturbation) quantities and ζ j= seventh-order vector for Keller residuals. This system is then recast as an expanded matrix–vector system, viz:

$$ \varsigma_{j} \delta_{j} - \omega_{j} \delta_{j} = \zeta_{j} , $$
(88)

where now ς j = coefficient matrix of order 7 × 7, ωj = coefficient matrix of order 7 × 7 and ζ j= seventh-order vector of errors (iterates) at the previous station on the grid. Finally, the complete linearized system is formulated as a block matrix system where each element in the coefficient matrix is a matrix itself.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar Bég, O., Prasad, V.R., Vasu, B. et al. Computational modeling of magnetohydrodynamic convection from a rotating cone in orthotropic Darcian porous media. J Braz. Soc. Mech. Sci. Eng. 39, 2035–2054 (2017). https://doi.org/10.1007/s40430-017-0708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0708-x

Keywords

Navigation