Skip to main content
Log in

Return to Play After a Hamstring Strain Injury: It is Time to Consider Natural Healing

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Return to play (RTP) criteria after hamstring strain injuries (HSIs) help clinicians in deciding whether an athlete is ready to safely resume previous sport activities. Today, functional and sport-specific training tests are the gold standard in the decision-making process. These criteria lead to an average RTP time between 11 and 25 days after a grade 1 or 2 HSI. However, the high re-injury rates indicate a possible inadequacy of the current RTP criteria. A possible explanation for this could be the neglect of biological healing time. The present review shows that studies indicating time as a possible factor within the RTP-decision are very scarce. However, studies on biological muscle healing showed immature scar tissue and incomplete muscle healing at the average moment of RTP. Twenty-five percent of the re-injuries occur in the first week after RTP and at the exact same location as the index injury. This review supports the statement that functional recovery precedes the biological healing of the muscle. Based on basic science studies on biological muscle healing, we recommend a minimum period of 4 weeks before RTP after a grade 1 or 2 HSI. In conclusion, we advise a comprehensive RTP functional test battery with respect for the natural healing process. Before deciding RTP readiness, clinicians should reflect whether or not it is biologically possible for the injured tissue to have regained enough strength to withstand the sport-specific forces. In an attempt to reduce the detrimental injury–reinjury cycle, it is time to start considering (biological healing) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brooks JH, Fuller CW, Kemp SP, Reddin DB. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med. 2006;34(8):1297–306.

    Article  PubMed  Google Scholar 

  2. Carling C, Orhant E, LeGall F. Match injuries in professional soccer: inter-seasonal variation and effects of competition type, match congestion and positional role. Int J Sports Med. 2010;31(4):271–6.

    Article  CAS  PubMed  Google Scholar 

  3. Ekstrand J, Hagglund M, Walden M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):1226–32.

    Article  PubMed  Google Scholar 

  4. Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011;45(7):553–8.

    Article  CAS  PubMed  Google Scholar 

  5. Hagglund M, Walden M, Ekstrand J. Injury incidence and distribution in elite football—a prospective study of the Danish and the Swedish top divisions. Scand J Med Sci Sports. 2005;15(1):21–8.

    Article  PubMed  Google Scholar 

  6. Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42(3):209–26.

    Article  PubMed  Google Scholar 

  7. Walden M, Hagglund M, Ekstrand J. UEFA Champions League study: a prospective study of injuries in professional football during the 2001–2002 season. Br J Sports Med. 2005;39(8):542–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, Hodson A, et al. The Football Association Medical Research Programme: an audit of injuries in professional football–analysis of hamstring injuries. Br J Sports Med. 2004;38(1):36–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Beijsterveldt AMC, van de Port IGL, Krist MR, Schmikli SL, Stubbe JH, Frederiks JE, et al. Effectiveness of an injury prevention programme for adult male amateur soccer players: a cluster-randomised controlled trial. Br J Sport Med. 2012;46(16):1114.

    Article  Google Scholar 

  10. Orchard J, Best TM. The management of muscle strain injuries: an early return versus the risk of recurrence. Clin J Sport Med. 2002;12(1):3–5.

    Article  PubMed  Google Scholar 

  11. Orchard J, Seward H. Epidemiology of injuries in the Australian Football League, seasons 1997–2000. Br J Sports Med. 2002;36(1):39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eliakim E, Morgulev E, Lidor R, Meckel Y. Estimation of injury costs: financial damage of English Premier League teams’ underachievement due to injuries. BMJ Open Sport Exerc Med. 2020;6(1):e000675.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2013;47(15):953–9.

    Article  PubMed  Google Scholar 

  14. Ekstrand J, Krutsch W, Spreco A, van Zoest W, Roberts C, Meyer T, et al. Time before return to play for the most common injuries in professional football: a 16-year follow-up of the UEFA Elite Club Injury Study. Br J Sports Med. 2020;54(7):421–6.

    Article  PubMed  Google Scholar 

  15. Ekstrand J, Walden M, Hagglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med. 2016;50(12):731–7.

    Article  PubMed  Google Scholar 

  16. Bourne MN, Timmins RG, Opar DA, Pizzari T, Ruddy JD, Sims C, et al. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018;48(2):251–67.

    Article  PubMed  Google Scholar 

  17. Brukner P. Hamstring injuries: prevention and treatment-an update. Br J Sports Med. 2015;49(19):1241–4.

    Article  PubMed  Google Scholar 

  18. van Dyk N, Behan FP, Whiteley R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. Br J Sports Med. 2019;53(21):1362–70.

    Article  PubMed  Google Scholar 

  19. Ardern CL, Glasgow P, Schneiders A, Witvrouw E, Clarsen B, Cools A, et al. 2016 Consensus statement on return to sport from the first world congress in sports physical therapy. Bern Br J Sports Med. 2016;50(14):853–64.

    Article  PubMed  Google Scholar 

  20. van der Horst N, Backx F, Goedhart EA, Huisstede BM, Group HI-D. Return to play after hamstring injuries in football (soccer): a worldwide Delphi procedure regarding definition, medical criteria and decision-making. Br J Sports Med. 2017;51(22):1583–91.

  21. Zambaldi M, Beasley I, Rushton A. Return to play criteria after hamstring muscle injury in professional football: a Delphi consensus study. Br J Sports Med. 2017;51(16):1221–6.

    Article  PubMed  Google Scholar 

  22. van der Horst N, van de Hoef S, Reurink G, Huisstede B, Backx F. Return to play after hamstring injuries: a qualitative systematic review of definitions and criteria. Sports Med. 2016;46(6):899–912.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wangensteen A, Tol JL, Witvrouw E, Van Linschoten R, Almusa E, Hamilton B, et al. Hamstring reinjuries occur at the same location and early after return to sport: a descriptive study of MRI-confirmed reinjuries. Am J Sports Med. 2016;44(8):2112–21.

    Article  PubMed  Google Scholar 

  24. Flores DV, Mejia Gomez C, Estrada-Castrillon M, Smitaman E, Pathria MN. MR imaging of muscle trauma: anatomy, biomechanics, pathophysiology, and imaging appearance. Radiographics. 2018;38(1):124–48.

    Article  PubMed  Google Scholar 

  25. Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am. 2002;84(5):822–32.

    Article  PubMed  Google Scholar 

  26. Huard J, Lu A, Mu X, Guo P, Li Y. Muscle injuries and repair: what’s new on the horizon! Cells Tissues Organs. 2016;202(3–4):227–36.

    Article  PubMed  Google Scholar 

  27. Jarvinen TA, Jarvinen M, Kalimo H. Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J. 2013;3(4):337–45.

    Article  PubMed  Google Scholar 

  28. Jarvinen TA, Jarvinen TL, Kaariainen M, Kalimo H, Jarvinen M. Muscle injuries: biology and treatment. Am J Sports Med. 2005;33(5):745–64.

    Article  PubMed  Google Scholar 

  29. Hallen A, Ekstrand J. Return to play following muscle injuries in professional footballers. J Sports Sci. 2014;32(13):1229–36.

    Article  PubMed  Google Scholar 

  30. Kilcoyne KG, Dickens JF, Keblish D, Rue JP, Chronister R. Outcome of grade I and II hamstring injuries in intercollegiate athletes: a novel rehabilitation protocol. Sports Health. 2011;3(6):528–33.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Delvaux F, Rochcongar P, Bruyere O, Bourlet G, Daniel C, Diverse P, et al. Return-to-play criteria after hamstring injury: actual medicine practice in professional soccer teams. J Sports Sci Med. 2014;13(3):721–3.

    PubMed  PubMed Central  Google Scholar 

  32. Silder A, Sherry MA, Sanfilippo J, Tuite MJ, Hetzel SJ, Heiderscheit BC. Clinical and morphological changes following 2 rehabilitation programs for acute hamstring strain injuries: a randomized clinical trial. J Orthop Sports Phys Ther. 2013;43(5):284–99.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Connell DA, Schneider-Kolsky ME, Hoving JL, Malara F, Buchbinder R, Koulouris G, et al. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. AJR Am J Roentgenol. 2004;183(4):975–84.

    Article  PubMed  Google Scholar 

  34. Schneider-Kolsky ME, Hoving JL, Warren P, Connell DA. A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries. Am J Sports Med. 2006;34(6):1008–15.

    Article  PubMed  Google Scholar 

  35. Vermeulen R, Almusa E, Buckens S, Six W, Whiteley R, Reurink G, et al. Complete resolution of a hamstring intramuscular tendon injury on MRI is not necessary for a clinically successful return to play. Br J Sports Med. 2020;2020:5.

    Google Scholar 

  36. Dunlop G, Ardern CL, Andersen TE, Lewin C, Dupont G, Ashworth B, et al. Return-to-play practices following hamstring injury: a worldwide survey of 131 premier league football teams. Sports Med. 2020;50(4):829–40.

    Article  PubMed  Google Scholar 

  37. Walden M, Hagglund M, Ekstrand J. Injuries in Swedish elite football–a prospective study on injury definitions, risk for injury and injury pattern during 2001. Scand J Med Sci Sports. 2005;15(2):118–25.

    Article  PubMed  Google Scholar 

  38. Hickey J, Shield AJ, Williams MD, Opar DA. The financial cost of hamstring strain injuries in the Australian Football League. Br J Sports Med. 2014;48(8):729–30.

    Article  PubMed  Google Scholar 

  39. Hurme T, Kalimo H, Lehto M, Jarvinen M. Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Med Sci Sports Exerc. 1991;23(7):801–10.

    Article  CAS  PubMed  Google Scholar 

  40. Kaariainen M, Jarvinen T, Jarvinen M, Rantanen J, Kalimo H. Relation between myofibers and connective tissue during muscle injury repair. Scand J Med Sci Sports. 2000;10(6):332–7.

    Article  CAS  PubMed  Google Scholar 

  41. Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, et al. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol. 2003;163(5):1133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tidball JG. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc. 1995;27(7):1022–32.

    Article  CAS  PubMed  Google Scholar 

  43. Hurme T, Kalimo H. Activation of myogenic precursor cells after muscle injury. Med Sci Sports Exerc. 1992;24(2):197–205.

    Article  CAS  PubMed  Google Scholar 

  44. Rantanen J, Hurme T, Lukka R, Heino J, Kalimo H. Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest. 1995;72(3):341–7.

    CAS  PubMed  Google Scholar 

  45. Jarvinen TA, Kannus P, Jarvinen TL, Jozsa L, Kalimo H, Jarvinen M. Tenascin-C in the pathobiology and healing process of musculoskeletal tissue injury. Scand J Med Sci Sports. 2000;10(6):376–82.

    Article  CAS  PubMed  Google Scholar 

  46. Lehto M, Sims TJ, Bailey AJ. Skeletal muscle injury–molecular changes in the collagen during healing. Res Exp Med (Berl). 1985;185(2):95–106.

    Article  CAS  Google Scholar 

  47. Kaariainen M, Nissinen L, Kaufman S, Sonnenberg A, Jarvinen M, Heino J, et al. Expression of alpha7beta1 integrin splicing variants during skeletal muscle regeneration. Am J Pathol. 2002;161(3):1023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaariainen M, Kaariainen J, Jarvinen TL, Sievanen H, Kalimo H, Jarvinen M. Correlation between biomechanical and structural changes during the regeneration of skeletal muscle after laceration injury. J Orthop Res. 1998;16(2):197–206.

    Article  CAS  PubMed  Google Scholar 

  49. Delos D, Maak TG, Rodeo SA. Muscle injuries in athletes: enhancing recovery through scientific understanding and novel therapies. Sports Health. 2013;5(4):346–52.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Stauber WT, Knack KK, Miller GR, Grimmett JG. Fibrosis and intercellular collagen connections from four weeks of muscle strains. Muscle Nerve. 1996;19(4):423–30.

    Article  CAS  PubMed  Google Scholar 

  51. Wiedemann H, Chung E, Fujii T, Miller EJ, Kuhn K. Comparative electron-microscope studies on type-III and type-I collagens. Eur J Biochem. 1975;51(2):363–8.

    Article  CAS  PubMed  Google Scholar 

  52. Best TM, Shehadeh SE, Leverson G, Michel JT, Corr DT, Aeschlimann D. Analysis of changes in mRNA levels of myoblast- and fibroblast-derived gene products in healing skeletal muscle using quantitative reverse transcription-polymerase chain reaction. J Orthop Res. 2001;19(4):565–72.

    Article  CAS  PubMed  Google Scholar 

  53. McCall A, Carling C, Nedelec M, Davison M, Le Gall F, Berthoin S, et al. Risk factors, testing and preventative strategies for non-contact injuries in professional football: current perceptions and practices of 44 teams from various premier leagues. Br J Sports Med. 2014;48(18):1352–7.

    Article  PubMed  Google Scholar 

  54. Askling CM, Tengvar M, Tarassova O, Thorstensson A. Acute hamstring injuries in Swedish elite sprinters and jumpers: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2014;48(7):532–9.

    Article  PubMed  Google Scholar 

  55. Hagglund M, Walden M, Magnusson H, Kristenson K, Bengtsson H, Ekstrand J. Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47(12):738–42.

    Article  PubMed  Google Scholar 

  56. Liu H, Garrett WE, Moorman CT, Yu B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: a review of the literature. J Sport Health Sci. 2012;1(2):92–101.

    Article  Google Scholar 

  57. Pollock N, James SL, Lee JC, Chakraverty R. British athletics muscle injury classification: a new grading system. Br J Sports Med. 2014;48(18):1347–51.

    Article  PubMed  Google Scholar 

  58. Study Group of the Muscle and Tendon System from the Spanish Society of Sports Traumatology, Balius R, Blasi M, Pedret C, Alomar X, et al. A histoarchitectural approach to skeletal muscle injury: searching for a common nomenclature. Orthop J Sports Med. 2020;8(3):2325967120909090.

  59. Pollock N, Patel A, Chakraverty J, Suokas A, James SL, Chakraverty R. Time to return to full training is delayed and recurrence rate is higher in intratendinous ('c’) acute hamstring injury in elite track and field athletes: clinical application of the British Athletics Muscle Injury Classification. Br J Sports Med. 2016;50(5):305–10.

    Article  PubMed  Google Scholar 

  60. van der Made AD, Almusa E, Whiteley R, Hamilton B, Eirale C, van Hellemondt F, et al. Intramuscular tendon involvement on MRI has limited value for predicting time to return to play following acute hamstring injury. Br J Sports Med. 2018;52(2):83–8.

    Article  PubMed  Google Scholar 

  61. Askling CM, Malliaropoulos N, Karlsson J. High-speed running type or stretching-type of hamstring injuries makes a difference to treatment and prognosis. Br J Sports Med. 2012;46(2):86–7.

    Article  PubMed  Google Scholar 

  62. Askling C, Saartok T, Thorstensson A. Type of acute hamstring strain affects flexibility, strength, and time to return to pre-injury level. Br J Sports Med. 2006;40(1):40–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during slow-speed stretching: clinical, magnetic resonance imaging, and recovery characteristics. Am J Sports Med. 2007;35(10):1716–24.

    Article  PubMed  Google Scholar 

  64. Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med. 2007;35(2):197–206.

    Article  PubMed  Google Scholar 

  65. De Vos RJ, Reurink G, Goudswaard GJ, Moen MH, Weir A, Tol JL. Clinical findings just after return to play predict hamstring re-injury, but baseline MRI findings do not. Br J Sports Med. 2014;48(18):1377–84.

    Article  PubMed  Google Scholar 

  66. Reurink G, Whiteley R, Tol JL. Hamstring injuries and predicting return to play: “bye-bye MRI?” Br J Sports Med. 2015;49(18):1162–3.

    Article  CAS  PubMed  Google Scholar 

  67. Brandenburg JE, Eby SF, Song P, Zhao H, Brault JS, Chen S, et al. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness. Arch Phys Med Rehabil. 2014;95(11):2207–19.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An KN. Validation of shear wave elastography in skeletal muscle. J Biomech. 2013;46(14):2381–7.

    Article  PubMed  Google Scholar 

  69. Schmalzl J, Fenwick A, Boehm D, Gilbert F. The application of ultrasound elastography in the shoulder. J Shoulder Elbow Surg. 2017;26(12):2236–46.

    Article  PubMed  Google Scholar 

  70. Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7(5):1303–29.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yoshida K, Itoigawa Y, Maruyama Y, Kaneko K. Healing process of gastrocnemius muscle injury on ultrasonography using B-mode imaging, power Doppler imaging, and shear wave elastography. J Ultrasound Med. 2019;38(12):3239–46.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dries Pieters.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest/competing interests

Dries Pieters, Evi Wezenbeek, Joke Schuermans and Erik Witvrouw declare that they have no conflicts of interest relevant to the content of this review.

Availability of data and material

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Authors' contributions

All authors had a substantial role in writing this manuscript and approved the final version to be submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pieters, D., Wezenbeek, E., Schuermans, J. et al. Return to Play After a Hamstring Strain Injury: It is Time to Consider Natural Healing. Sports Med 51, 2067–2077 (2021). https://doi.org/10.1007/s40279-021-01494-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01494-x

Navigation