, Volume 76, Issue 2, pp 169–185 | Cite as

Therapies to Preserve β-Cell Function in Type 1 Diabetes

  • Johnny LudvigssonEmail author
Leading Article


In spite of modern techniques, the burden for patients with type 1 diabetes mellitus will not disappear, and type 1 diabetes will remain a life-threatening disease causing severe complications and increased mortality. We have to learn of ways to stop the destructive process, preserve residual insulin secretion or even improve the disease via β-cell regeneration. This will give a milder disease, a more stable metabolism, simpler treatment and perhaps even cure. Therapies based on single drugs have not shown sufficient efficacy; however, there are several treatments with encouraging efficacy and no apparent, or rather mild, adverse events. As the disease process is heterogeneous, treatments have to be chosen to fit relevant subgroups of patients, and step by step efficacy can possibly be improved by the use of combination therapies. Thus immunosuppressive therapies like anti-CD3 and anti-CD20 monoclonal antibodies might be combined with fusion proteins such as etanercept [tumor necrosis factor (TNF)-α inhibitor] and/or abatacept (CTLA4-Ig) early after onset to stop the destructive process, supported by β-cell protective agents. The effect may be prolonged by using autoantigen therapy [glutamate decarboxylase (GAD) proinsulin], and by adding agents facilitating β-cell regeneration [e.g. glucagon-like peptide-1 (GLP-1)] there should be a good chance to make the disease milder, perhaps leading to cure in some patients.


Etanercept Proinsulin Abatacept Glutamic Acid Decarboxylase Juvenile Rheumatoid Arthritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



In addition to the author, the Linköping Diabetes Immune Intervention study group consists of Assistant Professor Rosaura Casas, a number of postdoctoral researchers (currently Sri Elluru, Hugo Barcenilla, Saubashya Sur, Betatriz Iglesias) and PhD students including Linda Åkerman.

We are grateful to excellent technical assistance from Ingela Johansson and Gosia Smolinska, and from research nurses Eva Isacson and AnnMarie Sandström. All pediatricians involved in our studies are also gratefully acknowledged.

Our studies on immune intervention have been generously supported by Barndiabetesfonden (Swedish Child Diabetes Foundation), Swedish Research Council, Research Council of Southeast Sweden (FORSS), and the mechanistic studies are supported by the Juvenile Diabetes Research Foundation (JDFR).

Compliance with Ethical Standards

Funding and disclosures

Diamyd Medical sponsored the phase II/III GAD trials and has also given unrestricted financial support for the investigator-initiated mechanistic studies connected to these trials. Honoraria for lectures have been received from NovoNordisk, Lilly and Sanofi Aventis., and as a member of Advisory Boards of LifeScan and DebioPharm.


  1. 1.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRefGoogle Scholar
  2. 2.
    Bojestig M, Arnqvist HJ, Hermansson G, Karlberg BE, Ludvigsson J. Declining incidence of nephropathy in insulin-dependent diabetes mellitus. N Engl J Med. 1994;330:15–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Lind M, Svensson AM, Rosengren A. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2015;372(9):880–1.PubMedGoogle Scholar
  4. 4.
    Lutterman JA, Benraad TJ, van ‘t Laar A. The relationship between residual insulin secretion and metabolic stability in type 1 (insulin dependent) diabetes. Diabetologia. 1981;21(2):99–102.PubMedCrossRefGoogle Scholar
  5. 5.
    Kohnert KD, Augstein P, Zander E, Heinke P, Peterson K, Freyse EJ, Hovorka R, Salzsieder E. Glycemic variability correlates strongly with postprandial beta-cell dysfunction in a segment of type 2 diabetic patients using oral hypoglycemic agents. Diabetes Care. 2009;32(6):1058–62.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Madsbad S, Alberti KG, Binder C, Burrin JM, Faber OK, Krarup T, Regeur L. Role of residual insulin secretion in protecting against ketoacidosis in insulin-dependent diabetes. Br Med J. 1979;2:1257–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Steffes MW, Sibley S, Jackson M, Thomas W. Beta-cell function and the development of diabetes-related complications in the Diabetes Control and Complications Trial. Diabetes Care. 2003;26:832–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Keenan HA, Sun JK, Levine J, Doria A, Aiello LP, Eisenbarth G, Bonner-Weir S, King GL. Residual insulin production and pancreatic ß-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 2010;59(11):2846–53.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Wahren J, Ekberg K, Jörnvall H. C-peptide is a bioactive peptide. Diabetologia. 2007;50(3):503–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Ludvigsson J. C-peptide an adequate end-point in type 1 diabetes. Diabetes Metab Res Rev. 2009;25(8):691–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Rowe PA, Campbell-Thompson ML, Schatz DA, Atkinson MA. The pancreas in human type 1 diabetes. Semin Immunopathol. 2011;33:29–43 (pmid: 20495921).PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Pugliese A, Vendrame F, Reijonen H, Atkinson MA, Campbell-Thompson M, Burke GW. New insight on human type 1 diabetes biology: nPOD and nPOD-transplantation. Curr Diab Rep. 2014;14(10):530.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gepts W, Lecompte PM. The pancreatic islets in diabetes. Am J Med. 1981;70(1):105–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Richardson SJ, Morgan NG, Foulis AK. Pancreatic pathology in type 1 diabetes mellitus. Endocr Pathol. 2014;25(1):80–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Rodriguez-Calvo T, Ekwall O, Amirian N, Zapardiel-Gonzalo J, von Herrath MG. Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes. 2014;63(11):3880–90.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ludvigsson J. Is it time to challenge the established theories surrounding type 1 diabetes? Acta Paediatr. 2014;103(2):120–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Roep BO, Peakman M. Diabetogenic T lymphocytes in human Type 1 diabetes. Curr Opin Immunol. 2011;23(6):746–53.PubMedCrossRefGoogle Scholar
  18. 18.
    Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3 + regulatory T cells. Nat Rev Immunol. 2011;11:119.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 2010;11:7.PubMedCrossRefGoogle Scholar
  20. 20.
    Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5(4):219–26.PubMedCrossRefGoogle Scholar
  21. 21.
    Eizirik DL, Grieco FA. On the immense variety and complexity of circumstances conditioning pancreatic β-cell apoptosis in type 1 diabetes. Diabetes. 2012;61(7):1661–3.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ludvigsson J, Heding L. Abnormal proinsulin/C-peptide ratio in juvenile diabetes. Acta Diabetol Lat. 1982;19(4):351–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Leahy JL, Bonner-Weir S, Weir GC. Beta-cell dysfunction induced by chronic hyperglycemia. Current ideas on mechanism of impaired glucose-induced insulin secretion. Diabetes Care. 1992;15(3):442–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Jackson RL, Boyd JD, Smith TE. Stabilization of the diabetic child. Am J Dis Child. 1940;59(2):332–41.Google Scholar
  25. 25.
    Brush JM. Initial stabilizatin of the diabetic child. Am J Dis Child. 1944;1944(67):429–34.Google Scholar
  26. 26.
    Ludvigsson J, Heding LG, Larsson Y, Leander E. C-peptide in juvenile diabetics beyond the postinitial remission period. Relation to clinical manifestations at onset of diabetes, remission and diabetic control. Acta Paediatr Scand. 1977;66(2):177–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Mirouze J, Selam JL, Pham TC, Mendoza E, Orsetti A. Sustained insulin-induced remissions of juvenile diabetes by means of an external artificial pancreas. Diabetologia. 1978;14(4):223–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Diabetes Prevention Trial-Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med. 2002;346(22):1685–91.CrossRefGoogle Scholar
  29. 29.
    Ortqvist E, Björk E, Wallensteen M, Ludvigsson J, Aman J, Johansson C, Forsander G, Lindgren F, Berglund L, Bengtsson M, Berne C, Persson B, Karlsson FA. Temporary preservation of beta-cell function by diazoxide treatment in childhood type 1 diabetes. Diabetes Care. 2004;27(9):2191–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Elliott RB, Chase HP. Prevention or delay of type 1 (insulin-dependent) diabetes mellitus in children using nicotinamide. Diabetologia. 1991;34(5):362–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Gale EA, Bingley PJ, Emmett CL, Collier T, European Nicotinamide Diabetes Intervention Trial (ENDIT) Group. European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet. 2004;363(9413):925–31.PubMedCrossRefGoogle Scholar
  32. 32.
    Ludvigsson J, Samuelsson U, Johansson C, Stenhammar L. Treatment with antioxidants at onset of type 1 diabetes in children: a randomized, double-blind placebo-controlled study. Diabetes Metab Res Rev. 2001;17(2):131–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Mayer-Davis EJ, Dabelea D, Crandell JL, Crume T, D’Agostino RB Jr, Dolan L, King IB, Lawrence JM, Norris JM, Pihoker C, The N. Nutritional factors and preservation of C-peptide in youth with recently diagnosed type 1 diabetes: SEARCH Nutrition Ancillary Study. Diabetes Care. 2013;36(7):1842–50.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hyppönen E, Läärä E, Reunanen A, Järvelin MR, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes; a birth-cohort study. Lancet. 2001;358:1500–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Zipitis CS, Akobeng AK. Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis. Arch Dis Child. 2008;93:512–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1α,25-Dihydroxyvitamin D3 has a direct effect on naive CD4+ T cells to enhance the development of Th2 cells. J Immunol. 2001;167:4974–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Mathieu C, Gysemans C, Giulietti A, Bouillon R. Vitamin D and diabetes. Diabetologia. 2005;48:1247–57.PubMedCrossRefGoogle Scholar
  38. 38.
    Markus W, Kaupper T, Adler K, Foersch J, Bonifacio E, Ziegler AG. No effect of the 1α,25-dihydroxyvitamin D3 on β-cell residual function and insulin requirement in adults with new-onset type 1 diabetes. Diabetes Care. 2010;33(7):1443–8.CrossRefGoogle Scholar
  39. 39.
    Bizzarri C, Pitocco D, Napoli N, Di Stasio E, Maggi D, Manfrini S, Suraci C, Cavallo MG, Cappa M, Ghirlanda G, Pozzilli P, IMDIAB Group. No protective effect of calcitriol on β-cell function in recent-onset type 1 diabetes. The IMDIAB XIII trial. Diabetes Care. 2010;33(9):1962–3.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Samuelsson U, Oikarinen S, Hyöty H, Ludvigsson J. Low zinc in drinking water is associated with the risk of type 1 diabetes in children. Pediatr Diabetes. 2011;12(3 Pt 1):156–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Ludvigsson J, Heding L, Liedén G, Marner B, Lernmark A. Plasmapheresis in the initial treatment of insulin-dependent diabetes mellitus in children. Br Med J (Clin Res Ed). 1983;286(6360):176–8.CrossRefGoogle Scholar
  42. 42.
    Stiller CR, Laupacis A, Dupre J, Jenner MR, Keown PA, Rodger W, Wolfe BM. Cyclosporine for treatment of early type I diabetes: preliminary results. N Engl J Med. 1983;308(20):1226–7.PubMedGoogle Scholar
  43. 43.
    Kitagawa T, Ludvigsson J. No cyclosporin A to diabetic children. Diabetes Care. 1988;11(5):447.PubMedCrossRefGoogle Scholar
  44. 44.
    Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F, Coutinho M, Malmegrim KC, Foss-Freitas MC, Simões BP, Foss MC, Squiers E, Burt RK. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2007;297(14):1568–76.PubMedCrossRefGoogle Scholar
  45. 45.
    Silverstein J, Maclaren N, Riley W, Spillar R, Radjenovic D, Johnson S. Immunosuppression with azathioprine and prednisone in recent-onset insulin-dependent diabetes mellitus. N Engl J Med. 1988;319(10):599–604.PubMedCrossRefGoogle Scholar
  46. 46.
    Eisenbarth GS, Srikanta S, Jackson R, et al. Anti-thymocyte globulin and prednisone immunotherapy of recent onset type 1 diabetes mellitus. Diabetes Res. 1985;2:271–6.PubMedGoogle Scholar
  47. 47.
    Haller MJ, Gitelman SE, Gottlieb PA, Michels AW, Rosenthal SM, Shuster JJ, Zou B, Brusko TM, Hulme MA, Wasserfall CH, Mathews CE, Atkinson MA, Schatz DA. Anti-thymocyte globulin/G-CSF treatment preserves β cell function in patients with established type 1 diabetes. J Clin Invest. 2015;125(1):448–55.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Eisenbarth GS, Srikanta S, Rabinowe SL, Jackson RA, Ganda OP, Soeldner JS. Restoration of first phase insulin secretion by daily prednisone in two islet cell antibody positive non-diabetic individuals. Transplant Proc. 1986;18:805–8.Google Scholar
  49. 49.
    Ludvigsson J. Immunological aspects on IDDM in children. Indian J Pediatr. 1989;56(Suppl 1):S7–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Pocecco M, De Campo C, Cantoni L, Tedesco F, Panizon F. Effect of high doses intravenous IgG in newly diagnosed diabetic children. Helv Paediatr Acta. 1987;42(4):289–95.PubMedGoogle Scholar
  51. 51.
    Ludvigsson J, Samuelsson U, Ernerudh J, Johansson C, Stenhammar L, Berlin G. Photopheresis at onset of type 1 diabetes: a randomised, double blind, placebo controlled trial. Arch Dis Child. 2001;85(2):149–54.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Faresjö MK, Ernerudh J, Berlin G, Garcia J, Ludvigsson J. The immunological effect of photopheresis in children with newly diagnosed type 1 diabetes. Pediatr Res. 2005;58(3):459–66.PubMedCrossRefGoogle Scholar
  53. 53.
    Ernerudh J, Ludvigsson J, Berlin G, Samuelsson U. Effect of photopheresis on lymphocyte population in children with newly diagnosed type 1 diabetes. Clin Diagn Lab Immunol. 2004;11(5):856–61.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Herold KC, Hagopian W, Auger JA, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346:1692–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Sherry N, Hagopian W, Ludvigsson J, Jain SM, Wahlen J, Ferry RJ Jr, Bode B, Aronoff S, Holland C, Carlin D, King KL, Wilder RL, Pillemer S, Bonvini E, Johnson S, Stein KE, Koenig S, Herold KC, Daifotis AG, Protege Trial Investigators. Teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebo-controlled trial. Lancet. 2011;378(9790):487–97.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hagopian W, Ferry RJ Jr, Sherry N, Carlin D, Bonvini E, Johnson S, Stein KE, Koenig S, Daifotis AG, Herold KC, Ludvigsson J, Protégé Trial Investigators. Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protégé trial. Diabetes. 2013;62(11):3901–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Herold KC, Gitelman SE, Ehlers MR, Gottlieb PA, Greenbaum CJ, Hagopian W, Boyle KD, Keyes-Elstein L, Aggarwal S, Phippard D, Sayre PH, McNamara J, Bluestone JA, AbATE Study Team. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes. 2013;62(11):3766–74.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, Gorus F, Goldman M, Walter M, Candon S, Schandene L, Crenier L, De Block C, Seigneurin JM, De Pauw P, Pierard D, Weets I, Rebello P, Bird P, Berrie E, Frewin M, Waldmann H, Bach JF, Pipeleers D, Chatenoud L. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med. 2005;352(25):2598–608.PubMedCrossRefGoogle Scholar
  59. 59.
    Keymeulen B, Walter M, Mathieu C, et al. Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual β-cell mass. Diabetologia. 2010;53:614–23.PubMedCrossRefGoogle Scholar
  60. 60.
    Aronson R, Gottlieb PA, Christiansen JS, Donner TW, Bosi E, Bode BW, et al. Low-dose otelixizumab anti-CD3 monoclonal antibody DEFEND-1 study: results of the randomized phase III study in recent-onset human type 1 diabetes. Diabetes Care. 2014;37(10):2746–54.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Keymeulen B, Candon S, Fafi-Kremer S, Ziegler A, Leruez-Ville M, Mathieu C, Vandemeulebroucke E, Walter M, Crenier L, Thervet E, Legendre C, Pierard D, Hale G, Waldmann H, Bach JF, Seigneurin JM, Pipeleers D, Chatenoud L. Transient Epstein–Barr virus reactivation in CD3 monoclonal antibody-treated patients. Blood. 2010;115(6):1145–55. doi: 10.1182/blood-2009-02-204875. (Epub 2009 Dec 9).
  62. 62.
    Mastrandrea L, Yu J, Behrens T, Buchlis J, Albini C, Fourtner S, Quattrin T. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care. 2009;32(7):1244–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, Becker DJ, Gitelman SE, Goland R, Gottlieb PA, Marks JB, McGee PF, Moran AM, Raskin P, Rodriguez H, Schatz DA, Wherrett D, Wilson DM, Lachin JM, Skyler JS, Type 1 Diabetes TrialNet Anti-CD20 Study Group. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med. 2009;361(22):2143–52.PubMedCrossRefGoogle Scholar
  64. 64.
    Ruderman EM, Richard PM. The evolving clinical profile of abatacept (CTLA4–Ig): a novel co-stimulatory modulator for the treatment of rheumatoid arthritis. Arthritis Res Therapy. 2005;7(Suppl 2):S21–5.CrossRefGoogle Scholar
  65. 65.
    Bluestone JA, St. Clair EW, Turka LA. CTLA4Ig: bridging the basic immunology with clinical application. Immunity. 2006;24:233–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Orban T, Bundy B, Becker DJ, The Type 1 Diabetes TrialNet Abatacept Study Group, et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised double-masked controlled trial. Lancet. 2011;378(9789):412–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rigby MR, Harris KM, Pinckney A, DiMeglio LA, Rendell MS, Felner EI, Dostou JM, Gitelman SE, Griffin KJ, Tsalikian E, Gottlieb PA, Greenbaum CJ, Sherry NA, Moore WV, Monzavi R, Willi SM, Raskin P, Keyes-Elstein L, Long SA, Kanaparthi S, Lim N, Phippard D, Soppe CL, Fitzgibbon ML, McNamara J, Nepom GT, Ehlers MR. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015;125(8):3285–96. doi: 10.1172/JCI81722.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Faustman DL, Wang L, Okubo Y, Burger D, Ban L, Man G, Zheng H, Schoenfeld D, Pompei R, Avruch J, Nathan DM. Proof-of-concept, randomized, controlled clinical trial of Bacillus-Calmette–Guerin for treatment of long-term type 1 diabetes. PLoS One. 2012;7(8):e41756. doi: 10.1371/journal.pone.0041756. (Epub 2012 Aug 8).
  69. 69.
    Allen HF, Klingensmith GJ, Jensen P, Simoes E, Hayward A, Chase HP. Effect of bacillus Calmette–Guerin vaccination on new-onset type 1 diabetes. A randomized clinical study. Diabetes Care. 1999;22(10):1703–7.PubMedCrossRefGoogle Scholar
  70. 70.
    EURODIAB Substudy 2 Study Group. [No authors listed]. Infections and vaccinations as risk factors for childhood type I (insulin-dependent) diabetes mellitus: a multicentre case-control investigation. Diabetologia. 2000;43(1):47–53.Google Scholar
  71. 71.
    Vaarala O. The role of the gut in beta-cell autoimmunity and type 1 diabetes: a hypothesis. Pediatr Diabetes. 2000;1(4):217–25.PubMedCrossRefGoogle Scholar
  72. 72.
    Vaarala O. Is it dietary insulin? Ann NY Acad Sci. 2006;1079:350–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Calcinaro F, Dionisi S, Marinaro M, et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia. 2005;48:1565–75.PubMedCrossRefGoogle Scholar
  74. 74.
    Simonen-Tikka ML, Hiekka AK, Klemola P, Poussa T, Ludvigsson J, Korpela R, Vaarala O, Roivainen M. Early human enterovirus infections in healthy Swedish children participating in the PRODIA pilot study. J Med Virol. 2012;84(6):923–30.PubMedCrossRefGoogle Scholar
  75. 75.
    Elias D, Markovits D, Reshef T, van der Zee R, Cohen IR. Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc Natl Acad Sci USA. 1990;87(4):1576–80.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Raz I, Elias D, Avron A, Tamir M, Metzger M, Cohen IR. Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet. 2001;358(9295):1749–53.PubMedCrossRefGoogle Scholar
  77. 77.
    Schloot NC, Meierhoff G, Lengyel C, Vándorfi G, Takács J, Pánczél P, Barkai L, Madácsy L, Oroszlán T, Kovács P, Sütö G, Battelino T, Hosszufalusi N, Jermendy G. Effect of heat shock protein peptide DiaPep277 on beta-cell function in paediatric and adult patients with recent-onset diabetes mellitus type 1: two prospective, randomized, double-blind phase II trials. Diabetes Metab Res Rev. 2007;23(4):276–85.PubMedCrossRefGoogle Scholar
  78. 78.
    Huurman VA, van der Meide PE, Duinkerken G, Willemen S, Cohen IR, Elias D, Roep BO. Immunological efficacy of heat shock protein 60 peptide DiaPep277 therapy in clinical type I diabetes. Clin Exp Immunol. 2008;152(3):488–97.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775.PubMedCrossRefGoogle Scholar
  80. 80.
    Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207:1871.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Long SA, Rieck M, Sanda S, Bollyky JB, Samuels PL, Goland R, et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta-cell function. Diabetes. 2012;61:2340.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Long SA, Rieck M, Sanda S, Bollyky JB, Samuels PL, Goland R, Ahmann A, Rabinovitch A, Aggarwal S, Phippard D, Turka LA, Ehlers MR, Bianchine PJ, Boyle KD, Adah SA, Bluestone JA, Buckner JH, Greenbaum CJ, Diabetes TrialNet and the Immune Tolerance Network. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes. 2012;61(9):2340–8. doi: 10.2337/db12-0049.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Simms MS, Scholfield DP, Jacobs E, et al. Ati-GnRH antibodies can induce castrate levels of testosterone in patients with advanced prostate cancer. Br J Cancer. 2000;83:443–6.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Johansen PAC, et al. Direct intralymphatic injection of peptide vaccines enhances immunogenicity. Eur J Immunol. 2005;35(2):568–74.PubMedCrossRefGoogle Scholar
  85. 85.
    Shoda LK, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, et al. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity. 2005;23(2):115–26.PubMedCrossRefGoogle Scholar
  86. 86.
    Boettler T, von Herrath M. Type 1 diabetes vaccine development: animal models vs. humans. Hum Vaccin. 2011;7(1):19–26.PubMedCrossRefGoogle Scholar
  87. 87.
    Staeva-Vieira T, Peakman M, von Herrath M. Translational mini-review series on type 1 diabetes: immune-based therapeutic approaches for type 1 diabetes. Clin Exp Immunol. 2007;148(1):17–31.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Quinn A, McInerney B, Reich EP, Kim O, Jensen KP, Sercarz EE. Regulatory and effector CD4 T cells in nonobese diabetic mice recognize overlapping determinants on glutamic acid decarboxylase and use distinct V beta genes. J Immunol. 2001;166(5):2982–91.PubMedCrossRefGoogle Scholar
  89. 89.
    Homann D, Holz A, Bot A, Coon B, Wolfe T, Petersen J, et al. Autoreactive CD4+ T cells protect from autoimmune diabetes via bystander suppression using the IL-4/Stat6 pathway. Immunity. 1999;11(4):463–72.PubMedCrossRefGoogle Scholar
  90. 90.
    Peakman M, von Herrath M. Antigen-specific immunotherapy for type 1 diabetes: maximizing the potential. Diabetes. 2010;59(9):2087–93.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Tisch R, Wang B, Serreze DV. Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J Immunol. 1999;163(3):1178–87.PubMedGoogle Scholar
  92. 92.
    Ludvigsson J. Adequate doses of autoantigen administered using the appropriate route may create tolerance and stop autoimmunity. Diabetologia. 2009;52(1):175–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Martens H, Goxe B, Geenen V. The thynmic repertoire of neuroendocrine-related self-antigens: physiological implications in T-cell life and death. Immunol. Today. 1996;17:312–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol. 2006;24:571–606.PubMedCrossRefGoogle Scholar
  95. 95.
    Fan Y, Rudert WA, Grupillo M, He J, Sisino G, Trucco M. Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J. 2009;28(18):2812–24.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Skyler JS, Krischer JP, Wolfsdorf J, Cowie C, Palmer JP, Greenbaum C, et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the Diabetes Prevention Trial-Type 1. Diabetes Care. 2005;28(5):1068–76.PubMedCrossRefGoogle Scholar
  97. 97.
    Näntö-Salonen K, Kupila A, Simell S, Siljander H, Salonsaari T, Hekkala A, Korhonen S, Erkkola R, Sipilä JI, Haavisto L, Siltala M, Tuominen J, Hakalax J, Hyöty H, Ilonen J, Veijola R, Simell T, Knip M, Simell O. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet. 2008;372(9651):1746–55.PubMedCrossRefGoogle Scholar
  98. 98.
    Orban T, Farkas K, Jalahej H, Kis J, Treszl A, Falk B, Reijonen H, Wolfsdorf J, Ricker A, Matthews JB, Tchao N, Sayre P, Bianchine P. Autoantigen-specific regulatory T cells induced in patients with type 1 diabetes mellitus by insulin B-chain immunotherapy. J Autoimmun. 2010;34(4):408–15.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Thrower SL, James L, Hall W, Green KM, Arif S, Allen JS, Van-Krinks C, Lozanoska-Ochser B, Marquesini L, Brown S, Wong FS, Dayan CM, Peakman M. Proinsulin peptide immunotherapy in type 1 diabetes: report of a first-in-man phase I safety study. Clin Exp Immunol. 2009;155(2):156–65.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Baekkeskov S, Nielsen JH, Marner B, Bilde T, Ludvigsson J, Lernmark A. Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins. Nature. 1982;298(5870):167–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Agardh CD, Cilio CM, Lethagen A, et al. Clinical evidence for the safety of GAD65 immunomodulation in adult-onset autoimmune diabetes. J Diabetes Complications. 2005;19:238–46.PubMedCrossRefGoogle Scholar
  102. 102.
    Agardh C-D, Lynch K, Palmér M, Link K, et al. GAD65 vaccination significantly reduces insulin dependence at five years follow-up in a dose escalating study in adult-onset autoimmune diabetes patients. Diabetologia. 2008;51(Suppl. 1):S230.Google Scholar
  103. 103.
    Ludvigsson J, Faresjo M, Hjorth M, Axelsson S, Cheramy M, Pihl M, et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med. 2008;359(18):1909–20.PubMedCrossRefGoogle Scholar
  104. 104.
    Ludvigsson J, Hjorth M, Chéramy M, Axelsson S, et al. Extended evaluation of the safety and efficacy of GAD treatment of children and adolescents with recent-onset type 1 diabetes: a randomised controlled trial. Diabetologia. 2011;54(3):634–40.PubMedCrossRefGoogle Scholar
  105. 105.
    Ludvigsson J, Krisky D, Casas R, Battelino T, et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N Engl J Med. 2012;366(5):433–42.PubMedCrossRefGoogle Scholar
  106. 106.
    Ludvigsson J, Chéramy M, Axelsson S, Pihl M, Akerman L, Casas R. GAD-treatment of children and adolescents with recent-onset Type 1 diabetes preserves residual insulin secretion after 30 months. For the clinical GAD-study group in Sweden. Diabetes Metab Res Rev. 2013.Google Scholar
  107. 107.
    Chéramy M, Skoglund C, Johansson I, Ludvigsson J, Hampe CS, Casas R. GAD-alum treatment in patients with type 1 diabetes and the subsequent effect on GADA IgG subclass distribution, GAD(65) enzyme activity and humoral response. Clin Immunol. 2010;137(1):31–40. doi: 10.1016/j.clim.2010.06.001.PubMedCrossRefGoogle Scholar
  108. 108.
    Axelsson S, Chéramy M, Hjorth M, Pihl M, et al. Long-lasting immune responses 4 years after GAD-alum treatment in children with type 1 diabetes. PLoS One. 2011;6(12):e29008.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hjorth M, Axelsson S, Rydén A, Faresjö M, Ludvigsson J, et al. GAD-alum treatment induces GAD65-specific CD4+ CD25 high FOXP3+ cells in type 1 diabetic patients. Clin Immunol. 2011;138(1):117–26.PubMedCrossRefGoogle Scholar
  110. 110.
    Wherrett DK, Bundy B, Becker DJ, et al. Antigen-based therapy with glutamicacid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet. 2011;378(9788):319–27.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    von Herrath MG, Whitton JL. DNA vaccination to treat autoimmune diabetes. Ann Med. 2000;32(5):285–92.CrossRefGoogle Scholar
  112. 112.
    Coon B, An LL, Whitton JL, von Herrath MG. DNA immunization to prevent autoimmune diabetes. J Clin Invest. 1999;104(2):189–94.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Jun HS. Regeneration of pancreatic beta cells. Front Biosci. 2008;1(13):6170–82.CrossRefGoogle Scholar
  114. 114.
    Rother KI, Spain LM, Wesley RA, Digon BJ 3rd, Baron A, Chen K, Nelson P, Dosch HM, Palmer JP, Brooks-Worrell B, Ring M, Harlan DM. Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes. Diabetes Care. 2009;32(12):2251–7.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Dungan KM, Buse JB, Ratner RE. Effects of therapy in type 1 and type 2 diabetes mellitus with a peptide derived from islet neogenesis associated protein (INGAP). Diabetes Metab Res Rev. 2009;25(6):558–65.PubMedCrossRefGoogle Scholar
  116. 116.
    Pickersgill LM, Mandrup-Poulsen TR. The anti-interleukin-1 in type 1 diabetes action trial–background and rationale. Diabetes Metab Res Rev. 2009;25(4):321–4 (Review).PubMedCrossRefGoogle Scholar
  117. 117.
    Moran A, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, Greenbaum CJ, Herold KC, Marks JB, Raskin P, Sanda S, Schatz D, Wherrett DK, Wilson DM, Krischer JP, Skyler JS, Type 1 Diabetes TrialNet Canakinumab Study Group, Pickersgill L, de Koning E, Ziegler AG, Böehm B, Badenhoop K, Schloot N, Bak JF, Pozzilli P, Mauricio D, Donath MY, Castaño L, Wägner A, Lervang HH, Perrild H, Mandrup-Poulsen T, AIDA Study Group, Pociot F, Dinarello CA. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet. 2013;381(9881):1905–15.PubMedCrossRefGoogle Scholar

Copyright information

© European Union 2015

Authors and Affiliations

  1. 1.Division of Pediatrics, Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden

Personalised recommendations