Clinical Pharmacokinetics

, Volume 52, Issue 5, pp 373–384 | Cite as

Population Pharmacokinetics of Metformin in Healthy Subjects and Patients with Type 2 Diabetes Mellitus: Simulation of Doses According to Renal Function

  • Janna K. Duong
  • Shaun S. Kumar
  • Carl M. Kirkpatrick
  • Louise C. Greenup
  • Manit Arora
  • Toong C. Lee
  • Peter Timmins
  • Garry G. Graham
  • Timothy J. Furlong
  • Jerry R. Greenfield
  • Kenneth M. Williams
  • Richard O. Day
Original Research Article


Background and Objective

Metformin is contraindicated in patients with renal impairment; however, there is poor adherence to current dosing guidelines. In addition, the pharmacokinetics of metformin in patients with significant renal impairment are not well described. The aims of this study were to investigate factors influencing the pharmacokinetic variability, including variant transporters, between healthy subjects and patients with type 2 diabetes mellitus (T2DM) and to simulate doses of metformin at varying stages of renal function.


Plasma concentrations of metformin were pooled from three studies: patients with T2DM (study A; n = 120), healthy Caucasian subjects (study B; n = 16) and healthy Malaysian subjects (study C; n = 169). A population pharmacokinetic model of metformin was developed using NONMEM® version VI for both the immediate-release (IR) formulation and the extended-release (XR) formulation of metformin. Total body weight (TBW), lean body weight (LBW), creatinine clearance (CLCR; estimated using TBW and LBW) and 57 single-nucleotide polymorphisms (SNPs) of metformin transporters (OCT1, OCT2, OCT3, MATE1 and PMAT) were investigated as potential covariates. A nonparametric bootstrap (n = 1,000) was used to evaluate the final model. This model was used to simulate 1,000 concentration–time profiles for doses of metformin at each stage of renal impairment to ensure metformin concentrations do not exceed 5 mg/l, the proposed upper limit.


Creatinine clearance and TBW were clinically and statistically significant covariates with the apparent clearance and volume of distribution of metformin, respectively. None of the 57 SNPs in transporters of metformin were significant covariates. In contrast to previous studies, there was no effect on the pharmacokinetics of metformin in patients carrying the reduced function OCT1 allele (R61C, G401S, 420del or G465R). Dosing simulations revealed that the maximum daily doses in relation to creatinine clearance to prescribe to patients are 500 mg (15 ml/min), 1,000 mg (30 ml/min), 2,000 mg (60 ml/min) and 3,000 mg (120 ml/min), for both the IR and XR formulations.


The population model enabled doses of metformin to be simulated for each stage of renal function, to ensure the concentrations of metformin do not exceed 5 mg/l. However, the plasma concentrations of metformin at these dosage levels are still quite variable and monitoring metformin concentrations may be of value in individualising dosage. This study provides confirmatory data that metformin can be used, with appropriate dosage adjustment, in patients with renal impairment.


Metformin Total Body Weight Population Pharmacokinetic Model Lean Body Weight Oral Availability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Prof. Kathleen Giacomini for advice on the selection of SNPs in metformin transporters and Dr. Pavel Bitter for the analyses of SNPs. Funding for this study was provided by the NH&MRC Programme Grant 568612, Australian Research Council Grant LP 0990670, and St Vincent’s Clinic Foundation Sister Mary Bernice Research Grant.

Conflicts of interest

Peter Timmins is a salaried employee of Bristol-Myers Squibb, which is involved in the development and marketing of products containing metformin. Apart from the salary of Dr. Timmins, Bristol-Myers Squibb made no other payments in the support of this work. All other authors declared no conflict of interest.

Supplementary material

40262_2013_46_MOESM1_ESM.pdf (82 kb)
Supplementary material 1 (PDF 81 kb)


  1. 1.
    World Health Organization. Diabetes fact sheet no. 312. 2012. Accessed 19 Feb 2012
  2. 2.
    Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49(12):2063–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–65.Google Scholar
  4. 4.
    Diabex tablets. Carole Park, Australia: Alphapharm Pty Ltd; 2012Google Scholar
  5. 5.
    Bruijstens LA, van Luin M, Buscher-Jungerhans PM, et al. Reality of severe metformin-induced lactic acidosis in the absence of chronic renal impairment. Neth J Med. 2008;66(5):185–90.PubMedGoogle Scholar
  6. 6.
    Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81–98.PubMedCrossRefGoogle Scholar
  7. 7.
    Tzvetkov MV, Vormfelde SV, Balen D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther. 2009;86(3):299–306.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhou M, Xia L, Wang J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos. 2007;35(10):1956–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Bardin C, Nobecourt E, Larger E, et al. Population pharmacokinetics of metformin in obese and non-obese patients with type 2 diabetes mellitus. Eur J Clin Pharmacol. 2012;68(6):961–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Tucker GT, Casey C, Phillips PJ, et al. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12(2):235–46.PubMedGoogle Scholar
  11. 11.
    Timmins P, Donahue S, Meeker J, et al. Steady-state pharmacokinetics of a novel extended-release metformin formulation. Clin Pharmacokinet. 2005;44(7):721–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Shu Y, Brown C, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther. 2008;83(2):273–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Sambol NC, Chiang J, O’Conner M, et al. Pharmacokinetics and pharmacodynamics of metformin in healthy subjects and patients with noninsulin-dependent diabetes mellitus. J Clin Pharmacol. 1996;36(11):1012–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Hong Y, Rohatagi S, Habtemariam B, et al. Population exposure-response modeling of metformin in patients with type 2 diabetes mellitus. J Clin Pharmacol. 2008;48(6):696–707.PubMedCrossRefGoogle Scholar
  15. 15.
    Christensen MM, Brasch-Andersen C, Green H, et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011;21(12):837–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Lalau JD, Lemaire-Hurtel AS, Lacroix C. Establishment of a database of metformin plasma concentrations and erythrocyte levels in normal and emergency situations. Clin Drug Investig. 2011;31(6):435–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Duong JK, Roberts DM, Furlong TJ, et al. Metformin therapy in patients with chronic kidney disease. Diabetes Obes Metab. 2012;15(10):963–5.Google Scholar
  18. 18.
    Zarghi A, Foroutan SM, Shafaati A, et al. Rapid determination of metformin in human plasma using ion-pair HPLC. J Pharm Biomed Anal. 2003;31(1):197–200.PubMedCrossRefGoogle Scholar
  19. 19.
    Boeckman A, Sheiner A, Beal S. NONMEM 6. Ellicott City: GloboMax, ICON Development Solutions; 2007.Google Scholar
  20. 20.
    Wang Y. Derivation of various NONMEM estimation methods. J Pharmacokinet Pharmacodyn. 2007;34(5):575–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Cullberg M, Eriksson UG, Larsson M, et al. Population modelling of the effect of inogatran, at thrombin inhibitor, on ex vivo coagulation time (APTT) in healthy subjects and patients with coronary artery disease. Br J Clin Pharmacol. 2001;51(1):71–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Janmahasatian S, Duffull SB, Chagnac A, et al. Lean body mass normalizes the effect of obesity on renal function. Br J Clin Pharmacol. 2008;65(6):964–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Janmahasatian S, Duffull SB, Ash S, et al. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.PubMedCrossRefGoogle Scholar
  24. 24.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Hooker AC, Staatz CE, Karlsson MO. Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm Res. 2007;24(12):2187–97.PubMedCrossRefGoogle Scholar
  26. 26.
    Brendel K, Comets E, Laffont C, et al. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm Res. 2006;23(9):2036–49.PubMedCrossRefGoogle Scholar
  27. 27.
    Henderson AR. The bootstrap: a technique for data-driven statistics. Using computer-intensive analyses to explore experimental data. Clin Chim Acta. 2005;359(1–2):1–26.PubMedCrossRefGoogle Scholar
  28. 28.
    Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of Hardy–Weinberg equilibrium. Am J Hum Genet. 2005;76(5):887–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Roos JF, Kirkpatrick CM, Tett SE, et al. Development of a sufficient design for estimation of fluconazole pharmacokinetics in people with HIV infection. Br J Clin Pharmacol. 2008;66(4):455–66.PubMedCrossRefGoogle Scholar
  30. 30.
    Lalau JD, Lacroix C. Measurement of metformin concentration in erythrocytes: clinical implications. Diabetes Obes Metab. 2003;5(2):93–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Sambol NC, Chiang J, Lin ET, et al. Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol. 1995;35(11):1094–102.PubMedCrossRefGoogle Scholar
  32. 32.
    Bonate PL. The effect of collinearity on parameter estimates in nonlinear mixed effect models. Pharm Res. 1999;16(5):709–17.PubMedCrossRefGoogle Scholar
  33. 33.
    Bricker NS, Morrin PA, Kime SW Jr. The pathologic physiology of chronic Bright’s disease. An exposition of the “intact nephron hypothesis”. Am J Med. 1960;28:77–98.PubMedCrossRefGoogle Scholar
  34. 34.
    Nies AT, Koepsell H, Winter S, et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology. 2009;50(4):1227–40.PubMedCrossRefGoogle Scholar
  35. 35.
    Aoki M, Terada T, Kajiwara M, et al. Kidney-specific expression of human organic cation transporter 2 (OCT2/SLC22A2) is regulated by DNA methylation. Am J Physiol Ren Physiol. 2008;295(1):F165–70.CrossRefGoogle Scholar
  36. 36.
    Kamber N, Davis WA, Bruce DG, et al. Metformin and lactic acidosis in an Australian community setting: the Fremantle Diabetes Study. Med J Aust. 2008;188(8):446–9.PubMedGoogle Scholar
  37. 37.
    Nye HJ, Herrington WG. Metformin: the safest hypoglycaemic agent in chronic kidney disease? Nephron Clin Pract. 2011;118(4):c380–3.PubMedCrossRefGoogle Scholar
  38. 38.
    Rossi S. Australian medicines handbook 2011. Adelaide: Australian Medicines Handbook Pty Ltd; 2011.Google Scholar
  39. 39.
    Frid A, Sterner GN, Londahl M, et al. Novel assay of metformin levels in patients with type 2 diabetes and varying levels of renal function: clinical recommendations. Diabetes Care. 2010;33(6):1291–3.PubMedCrossRefGoogle Scholar
  40. 40.
    Kamber N, Davis WA, Bruce DG, et al. Metformin and lactic acidosis in an Australian community setting: the Fremantle Diabetes Study. Med J Aust. 2008;188(8):446–9.PubMedGoogle Scholar
  41. 41.
    Briet C, Saraval-Gross M, Kajbaf F, et al. Erythrocyte metformin levels in patients with type 2 diabetes and varying severity of chronic kidney disease. Clin Kidney J. 2012;5(1):65–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Janna K. Duong
    • 1
    • 2
  • Shaun S. Kumar
    • 1
    • 2
  • Carl M. Kirkpatrick
    • 3
  • Louise C. Greenup
    • 2
  • Manit Arora
    • 1
  • Toong C. Lee
    • 4
  • Peter Timmins
    • 5
  • Garry G. Graham
    • 1
    • 2
  • Timothy J. Furlong
    • 6
  • Jerry R. Greenfield
    • 7
    • 8
  • Kenneth M. Williams
    • 1
    • 2
  • Richard O. Day
    • 1
    • 2
  1. 1.School of Medical SciencesUniversity of New South Wales, KensingtonSydneyAustralia
  2. 2.Department of Clinical Pharmacology and Toxicology, Level 2 Xavier BuildingSt Vincent’s HospitalSydneyAustralia
  3. 3.Centre for Medicine Use and SafetyMonash UniversityMelbourneAustralia
  4. 4.Universiti Sains MalaysiaPenangMalaysia
  5. 5.Bristol-Myers Squibb, Drug Product Sciefnce and TechnologyMerseysideUK
  6. 6.Department of NephrologySt Vincent’s HospitalSydneyAustralia
  7. 7.Department of EndocrinologySt Vincent’s HospitalSydneyAustralia
  8. 8.Diabetes and Obesity Research ProgramGarvan Institute of Medical ResearchSydneyAustralia

Personalised recommendations