Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 627–635 | Cite as

Excited State Properties of Fucoxanthin Aggregates

  • Jialing Zuo
  • Liming Tan
  • Yi Xu
  • Yingchao Ma
  • Jia Dong
  • Peng WangEmail author
  • Jianping Zhang
Article
  • 2 Downloads

Abstract

The structure and excited state properties of the H- and J-aggregates of the marine carbonyl carotenoid, fucoxanthin(Fx), were studied by various spectroscopic methods, and compared with those of Fx monomers in polar organic solvents. The fluorescent analysis indicated that the higher vibronic states of S2 contribute more to populating the S1 state, from which fluorescent emission mainly originates. Resonance Raman and density functional theory calculations confirmed the ‘card-packed’ and ‘head-to-tail’ structures of the H- and J-aggregates of Fx, respectively. An fs time-resolved absorption study proved the coexistence of S1 and intramolecular charge transfer relaxation pathways upon excitation to the S2 state for both the monomers and aggregates.

Keywords

Fucoxanthin aggregate Resonance Raman fs Time-resolved absorption Excited state property Singlet fission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9097_MOESM1_ESM.pdf (266 kb)
Supplementary material, approximately 228 KB.

References

  1. [1]
    Köhn S., Kolbe H., Korger M., Köpsel C., Mayer B., Auweter H., Lüddecke E., Bettermann H., Martin H. D.; Ed.: Britton G., Liaaen-Jensen S., Pfander H., Aggregation and Interface Behaviour of Carotenoids, Chapter 5, Carotenoids, Birkhäuser, Basel, 2008, 4, 53Google Scholar
  2. [2]
    Gruszecki W. I., Zelent B., Leblanc R. M., Chem. Phys. Lett., 1990, 171(5), 563CrossRefGoogle Scholar
  3. [3]
    Köpsel C., Möltgen H., Schuch H., Auweter H., Kleinermanns K., Martin H. D., Bettermann H., J. Mol. Struct., 2005, 750, 109CrossRefGoogle Scholar
  4. [4]
    Spano F. C., J. Am. Chem. Soc., 2009, 131, 4267PubMedCrossRefGoogle Scholar
  5. [5]
    Wang C., Berg C. J., Hsu C. C., Merrill B. A., Tauber M. J., J. Phys. Chem. B, 2012, 116, 10617PubMedCrossRefGoogle Scholar
  6. [6]
    Adamkiewicz P., Sujak A., Gruszecki W. I., J. Mol. Struct., 2013, 1046, 44CrossRefGoogle Scholar
  7. [7]
    Hempel J., Schädle C. N., Leptihn S., Carle R., Schweiggert R. M., J. Photochem. Photobiol. A, 2016, 317, 161CrossRefGoogle Scholar
  8. [8]
    Zajac G., Kaczor A., Pallares Z. A., Mlynarski J., Dudek M., Baranska M., J. Phys. Chem. B, 2016, 120, 4028PubMedCrossRefGoogle Scholar
  9. [9]
    Saito S., Tasumit M., Eugster C. H., J. Raman Spectrosc., 1983, 14(5), 299CrossRefGoogle Scholar
  10. [10]
    Hashimoto H., KIiyohara D., Kamo Y., Komuta H., Mori Y., Jpn. J. Appl. Phys., 1996, 35, 281CrossRefGoogle Scholar
  11. [11]
    Mori Y., J. Raman Spectrosc., 2001, 32, 543CrossRefGoogle Scholar
  12. [12]
    Gaier K., Angerhofer A., Wolf H. C., Chem. Phys. Lett., 1991, 187(1), 103CrossRefGoogle Scholar
  13. [13]
    Okamoto H., Hamaguchi H. O., Tasumi M., J. Ramam Spectrosc., 1989, 20, 751CrossRefGoogle Scholar
  14. [14]
    Zsila F., Bikádi Z., Keresztes Z., Deli J., Simonyi M., J. Phys. Chem. B, 2001, 105(39), 9413CrossRefGoogle Scholar
  15. [15]
    Spano F. C., Acc. Chem. Res., 2010, 43(3), 429PubMedCrossRefGoogle Scholar
  16. [16]
    Mori Y., Yamano K., Hashimoto H., Chem. Phys. Lett., 1996, 254, 84CrossRefGoogle Scholar
  17. [17]
    Dong J., Zhang D., Wang X. Y., Wang P., Chem. Phys. Lett., 2018, 701, 52CrossRefGoogle Scholar
  18. [18]
    Smith M. B., Michl J., Chem. Rev., 2010, 110, 6891PubMedPubMedCentralCrossRefGoogle Scholar
  19. [19]
    Wang X. F., Wang L., Wang Z., Wang Y., Tamai N., Hong Z., Kido J., J. Phys. Chem. C, 2013, 117, 804CrossRefGoogle Scholar
  20. [20]
    Billsten H. H., Sundström V., Polívka T., J. Phys. Chem. A, 2005, 109, 1521PubMedCrossRefGoogle Scholar
  21. [21]
    Wang C., Tauber M. J., J. Am. Chem. Soc., 2010, 132, 13988PubMedPubMedCentralCrossRefGoogle Scholar
  22. [22]
    Wang C., Angelella M., Kuo C. H., Tauber M. J., Proc. SPIE, 2012, 8459, 1Google Scholar
  23. [23]
    Fuciman M., Durchan M., Šlouf V., Keşan G., Polívka T., Chem. Phys. Lett., 2013, 568/569, 21CrossRefGoogle Scholar
  24. [24]
    Musser A. J., Maiuri M., Brida D., Cerullo G., Friend R. H., Clark J., J. Am. Chem. Soc., 2015, 137, 5130PubMedPubMedCentralCrossRefGoogle Scholar
  25. [25]
    Zhang D., Tan L., Dong J., Yi J., Wang P., Zhang J., Chem. Res. Chinese Universities, 2018, 34(4), 634Google Scholar
  26. [26]
    Yu J., Fu L. M., Yu L. J., Shi Y., Wang P., Wang-Otomo Z. Y., Zhang J. P., J. Am. Chem. Soc., 2017, 139, 15984PubMedCrossRefGoogle Scholar
  27. [27]
    Hashimoto H., Sugai Y., Uragami C., Gardiner A. T., Cogdell R. J., J. Photochem. Photobiol. C, 2015, 25, 46CrossRefGoogle Scholar
  28. [28]
    Polívka T., Frank H. A., Acc. Chem. Res., 2010, 43(8), 1125PubMedPubMedCentralCrossRefGoogle Scholar
  29. [29]
    Yamano Y., Mimuro M., Ito M., J. Chem. Soc., Perkin Trans., 1997, 1, 2713CrossRefGoogle Scholar
  30. [30]
    Katoh T., Nagashima U., Mimuro M., Photosynth. Res., 1991, 27, 221PubMedGoogle Scholar
  31. [31]
    Kosumi D., Kusumoto T., Fujii R., Sugisaki M., Iinuma Y., Oka N., Takaesu Y., Taira T., Iha M., Frank H. A., Hashimoto H., Chem. Phys. Lett., 2009, 483, 95CrossRefGoogle Scholar
  32. [32]
    Kosumi D., Fujii R., Sugisaki M., Oka N., Iha M., Hashimoto H., Photosynth. Res., 2014, 121, 61PubMedCrossRefGoogle Scholar
  33. [33]
    Kosumi D., Kusumoto T., Fujii R., Sugisaki M., Iinuma Y., Oka N., Takaesu Y., Taira T., Iha M., Frank H. A., Hashimoto H., J. Lumin., 2011, 131, 515CrossRefGoogle Scholar
  34. [34]
    Redeckas K., Voiciuk V., Vengris M., Photosynth. Res., 2016, 128, 169PubMedCrossRefGoogle Scholar
  35. [35]
    Zigmantas D., Polívka T., Hiller R. G., Yartsev A., Sundström V., J. Phys. Chem. A, 2001, 105, 10296CrossRefGoogle Scholar
  36. [36]
    Zigmantas D., Hiller R. G., Yartsev A., Sundström V., Polívka T., J. Phys. Chem. B, 2003, 107, 5339CrossRefGoogle Scholar
  37. [37]
    Zigmantas D., Hiller R. G., Sharples F. P., Frank H. A., Sundström V., Polívka T., Phys. Chem. Chem. Phys., 2004, 6, 3009CrossRefGoogle Scholar
  38. [38]
    Chatterjee N., Niedzwiedzki D. M., Kajikawa T., Hasegawa S., Katsumura S., Frank H. A., Chem. Phys. Lett., 2008, 463, 219PubMedPubMedCentralCrossRefGoogle Scholar
  39. [39]
    Frank H. A., Bautista J. A., Josue J., Pendon Z., Hiller R. G., Sharples F. P., Gosztola D., Wasielewski M. R., J. Phys. Chem. B, 2000, 104, 4569CrossRefGoogle Scholar
  40. [40]
    Bautista J. A., Connors R. E., Raju B. B., Hiller R. G., Sharples F. P., Gosztola D., Wasielewski M. R., Frank H. A., J. Phys. Chem. B, 1999, 103, 8751CrossRefGoogle Scholar
  41. [41]
    Papagiannakis E., Vengris M., Larsen D. S., van Stokkum I. H. M., Hiller R. G., van Grondelle R., J. Phys. Chem. B, 2006, 110, 512PubMedCrossRefGoogle Scholar
  42. [42]
    Papagiannakis E., Larsen D. S., van Stokkum I. H. M., Vengris M., Hiller R. G., van Grondelle R., Biochemistry, 2004, 43(49), 15303PubMedCrossRefGoogle Scholar
  43. [43]
    Niedzwiedzki D. M., Chatterjee N., Enriquez M. M., Kajikawa T., Hasegawa S., Katsumura S., Frank H. A., J. Phys. Chem. B, 2009, 113, 13604PubMedPubMedCentralCrossRefGoogle Scholar
  44. [44]
    Stalke S., Wild D. A., Lenzer T., Kopczynski M., Lohse P. W., Oum K., Phys. Chem. Chem. Phys., 2008, 10(16), 2180PubMedCrossRefGoogle Scholar
  45. [45]
    Wild D. A., Winkler K., Stalke S., Oum K., Lenzer T., Phys. Chem. Chem. Phys., 2006, 8, 2499PubMedCrossRefGoogle Scholar
  46. [46]
    Linden P. A., Zimmermann J., Brixner T., Holt N. E., Vaswani H. M., Hiller R. G., Fleming G. R., J. Phys. Chem. B, 2004, 108, 10340CrossRefGoogle Scholar
  47. [47]
    Kita S., Fujii R., Cogdell R. J., Hashimoto H., J. Photochem. Photobiol. A, 2015, 313, 3CrossRefGoogle Scholar
  48. [48]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09 Revision C.01, Gaussian Inc., Wallingford CT, 2009 Google Scholar
  49. [49]
    Wang C., Angelella M., Doyle S. J., Lytwak L. A., Rossky P. J., Holliday B. J., Tauber M. J., J. Phys. Chem. Lett., 2015, 6, 3521PubMedCrossRefGoogle Scholar
  50. [50]
    Frank H. A., Bautista J. A., Josue J., Pendon Z., Hiller R. G., Sharples F. P., Gosztola D., Wasielewski M. R., J. Phys. Chem. B, 2000, 104, 4569CrossRefGoogle Scholar
  51. [51]
    Shima S., Ilagan R. P., Gillespie N., Sommer B. J., Hiller R. G., Sharples F. P., Frank H. A., Birge R. R., J. Phys. Chem. A, 2003, 107, 8052CrossRefGoogle Scholar
  52. [52]
    Hestand N. J., Spano F. C., Chem. Rev., 2018, 118, 7069PubMedCrossRefGoogle Scholar
  53. [53]
    Polívka T., Sundström V., Chem. Rev., 2004, 104, 2021PubMedCrossRefGoogle Scholar
  54. [54]
    Hudson B. S., Kohler B. E., Schulten K., Excited States, 1982, 6, 1CrossRefGoogle Scholar
  55. [55]
    Polívka T., Kerfeld C. A., Pascher T., Sundström V., Biochemistry, 2005, 44, 3994PubMedCrossRefGoogle Scholar
  56. [56]
    Kosumi D., Kusumoto T., Fujii R., Sugisaki M., Iinuma Y., Oka N., Takaesu Y., Taira T., Iha M., Frank H. A., Hashimoto H., Phys. Chem. Chem. Phys., 2011, 13, 10762PubMedCrossRefGoogle Scholar
  57. [57]
    Premvardhan L., Bordes L., Beer A., Büchel C., Robert B., J. Phys. Chem. B, 2009, 113, 12565PubMedCrossRefGoogle Scholar
  58. [58]
    Frank H. A., Young A. J., Britton G., Cogdell R. J.; Ed.: Govindjee R. J., Advances in Photosynthesis, Kluwer Academic Publishers, Dordrecht, 1999 Google Scholar
  59. [59]
    Nagae H., Kuki M., Zhang J. P., Sashima T., Mukai Y., Koyama Y., J. Phys. Chem. A, 2000, 104, 4155CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer -Verlag GmbH 2019

Authors and Affiliations

  • Jialing Zuo
    • 1
  • Liming Tan
    • 1
  • Yi Xu
    • 1
  • Yingchao Ma
    • 1
  • Jia Dong
    • 1
  • Peng Wang
    • 1
    Email author
  • Jianping Zhang
    • 1
  1. 1.Department of ChemistryRenmin University of ChinaBeijingP. R. China

Personalised recommendations