Skip to main content

Advertisement

Log in

Dimeric conformation sensitive electronic excited states of tetracene congeners and their unconventional non-fluorescent behaviour

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Unconventional non-fluorescent J-aggregates of Tetracene (TC) and Naphtho[2,1,8-qra]tetracene (NT) were witnessed and their consequent dramatic quenching was unravelled by a steady state, time-resolved and transient spectroscopy in conjunction with excited state density functional calculations. The TC O-aggregate with slippage angle \(\uptheta = 22.3^{\circ }< 54.7^{\circ }\) exhibited substantial transition dipole moment (TDM) for both lower (2.79 D) and higher (1.59 D) energy singlet excitations, while, NT formed an ideal J-aggregate (polarization angle, \(\upalpha \sim 0^{\circ })\) with a predominant TDM to only a lower excitonic state (2.69 D). Subsequently, their unusual quenching was quantified with large drops in the photoluminescence quantum yields (PLQY) from 0.116 to 0.002 upon TC O-aggregation and from 0.478 to 0.038 upon NT J-aggregation. These intense PL drops were systematically investigated for possible occurrence of excimer-like emission quenching and/or photo-degradation of the TC core unit. In view of the TC O-aggregates exhibiting a perfect energetic balance between the singlet (2.34 eV) and triplet (1.28 eV) energies for singlet fission (SF) and a concomitant delayed fluorescence signal, their \(\hbox {S}_{{1}}\) decay characteristics were attributed to SF followed by an inverse triplet-triplet recombination. In contrast, the energetic imbalance (\(\hbox {E}(\hbox {S}_{1}) < \hbox {2xE}(\hbox {T}_{1})\)) in NT J-aggregates permitted only forward process of SF and the resulting long-lived triplet formation was traced with a positive transient absorption (\(\hbox {T}_{1} \rightarrow \hbox {T}_{\mathrm{n}})\) band at 500 nm. Accordingly, the singlet excited state \((\hbox {S}_{1})\) dynamics of TC O- and NT J-aggregates, being largely dominated by SF, depicted a depleted \(\hbox {S}_{{1}}\) population, accounting for the large deviation from aggregation induced enhanced emission, exhibited by classical dye J-aggregates.

Graphical Abstract:

Unconventional O- and J -aggregates of Tetracene and Naphtho[2,1,8-qra]tetracene showed non-fluorescent behaviour whose singlet excited state (S\(_{1})\) dynamics was largely governed by fast Singlet Fission decay, accounting for atypical deviation from the well-established aggregation induced enhanced emission from classical J-aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scholes G D and Rumbles G 2006 Excitons in nanoscale systems Nat. Mater. 5 683

    Article  CAS  Google Scholar 

  2. Würthner F, Kaiser T E and Saha-Möller C R 2011 J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials Angew. Chem. Int. Ed. 50 3376

    Article  Google Scholar 

  3. Kasha M, Rawls H and El-Bayoumi M A 1965 The exciton model in molecular spectroscopy Pure Appl. Chem. 11 371

    Article  CAS  Google Scholar 

  4. Kasha M, Rawls H and El-Bayoumi M A 1965 The exciton model in molecular spectroscopy Pure Appl. Chem. 11 371

    Article  CAS  Google Scholar 

  5. An B-K, Kwon S-K, Jung S-D and Park S Y 2002 Enhanced emission and its switching in fluorescent organic nanoparticles J. Am. Chem. Soc. 124 14410

    Article  CAS  Google Scholar 

  6. Kar H and Ghosh S 2016 J-aggregation of a sulfur-substituted naphthalenediimide (NDI) with remarkably bright fluorescence Chem. Commun. 52 8818

    Article  CAS  Google Scholar 

  7. Basak S, Nandi N, Bhattacharyya K, Datta A and Banerjee A 2015 Fluorescence from an H-aggregated naphthalenediimide based peptide: Photophysical and computational investigation of this rare phenomenon Phys. Chem. Chem. Phys. 17 30398

    Article  CAS  Google Scholar 

  8. Rösch U, Yao S, Wortmann R and Würthner F 2006 Fluorescent H-aggregates of merocyanine dyes Angew. Chem. Int. Ed. 45 7026

    Article  Google Scholar 

  9. Bayda M, Dumoulin F, Hug G L, Koput J, Gorniak R and Wojcik A 2017 Fluorescent H-aggregates of an asymmetrically substituted mono-amino Zn(II) phthalocyanine Dalton Trans. 46 1914

    Article  CAS  Google Scholar 

  10. Miguel G de, Ziołek, M, Zitnan, M, Organero J A, Pandey S S, Hayase S and Douha A 2012 Photophysics of H- and J-aggregates of indole-based squaraines in solid state J. Phys. Chem. C 116 9379

  11. Aggarwal N and Patnaik A 2017 Unusual non-emissive behavior of rubrene J-aggregates: A rare violation J. Phys. Chem. B 121 3190

    Article  CAS  Google Scholar 

  12. Jelley E E 1936 Spectral absorption and fluorescence of dyes in the molecular state Nature 138 1009

    Article  CAS  Google Scholar 

  13. Lee J, Jadhav P, Reusswig P D, Yost S R, Thompson N J, Congreve D N, Hontz E, Van Voorhis T and Baldo M A 2013 Singlet exciton fission photovoltaics Acc. Chem. Res. 46 1300

    Article  CAS  Google Scholar 

  14. Jadhav P J, Mohanty A, Sussman J, Lee J and Baldo M A 2011 Singlet exciton fission in nanostructured organic solar cells Nano Lett. 11 1495

    Article  CAS  Google Scholar 

  15. Ehrler B, Wilson M W B, Rao A, Friend R H and Greenham N C 2012 Singlet exciton fission-sensitized infrared quantum dot solar cells Nano Lett. 12 1053

    Article  CAS  Google Scholar 

  16. Rao A, Wilson M W B, Hodgkiss J M, Albert-Seifried S, Bässler H and Friend R H 2010 Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers J. Am. Chem. Soc. 132 12698

    Article  CAS  Google Scholar 

  17. Congreve D N, Lee J, Thompson N J, Hontz E, Yost S R, Reusswig P D, Bahlke M E, Reineke S, Van Voorhis T and Baldo M A 2013 External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell Science 340 334

  18. Picciolo L C, Murata H and Kafafi Z H 2001 Organic light-emitting devices with saturated red emission using 6,13-diphenylpentacene Appl. Phys. Lett. 78 2378

    Article  CAS  Google Scholar 

  19. Wolak M A, Jang B-B, Palilis L C and Kafafi Z H 2004 Functionalized pentacene derivatives for use as red emitters in organic light-emitting diodes J. Phys. Chem. B 108 5492

    Article  CAS  Google Scholar 

  20. Xu Q, Duong H M, Wudl F and Yang Y 2004 Efficient single-layer “twistacene”-doped polymer white light-emitting diodes Appl. Phys. Lett. 85 3357

    Article  CAS  Google Scholar 

  21. Merlo J A, Newman C R, Gerlach C P, Kelley T W, Muyres D V, Fritz S E, Toney M F and Frisbie C D 2005 p-Channel organic semiconductors based on hybrid acene-thiophene molecules for thin-film transistor applications J. Am. Chem. Soc. 127 3997

    Article  CAS  Google Scholar 

  22. Tang M L, Reichardt A D, Miyaki N, Stoltenberg R M and Bao Z 2008 Ambipolar, high performance, acene-based organic thin film transistors J. Am. Chem. Soc. 130 6064

    Article  CAS  Google Scholar 

  23. Smith M B and Michl J 2013 Recent advances in singlet fission Annu. Rev. Phys. Chem. 64 361

    Article  CAS  Google Scholar 

  24. Ma L, Zhang K, Kloc C, Sun H, Michel-Beyerle M E and Gurzadyan G G 2012 Singlet fission in rubrene single crystal: direct observation by femtosecond pump–probe spectroscopy Phys. Chem. Chem. Phys. 14 8307

    Article  CAS  Google Scholar 

  25. Singh S, Jones W J, Siebrand W, Stoicheff B P and Schneider W G 1965 Laser generation of excitions and fluorescence in anthracene crystals J. Chem. Phys. 42 330

    Article  CAS  Google Scholar 

  26. Chan W-L, Ligges M and Zhu X Y 2012 The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain Nat. Chem. 4 840

    Article  CAS  Google Scholar 

  27. Wilson M W B, Rao A, Johnson K, Gélinas S, di Pietro R, Clark J and Friend R H 2013 Temperature-independent singlet exciton fission in tetracene J. Am. Chem. Soc. 135 16680

    Article  CAS  Google Scholar 

  28. Birech Z, Schwoerer M, Schmeiler T, Pflaum J and Schwoerer H 2014 Ultrafast dynamics of excitons in tetracene single crystals J. Chem. Phys. 140 114501

    Article  Google Scholar 

  29. Arnold S and Whitten W B 1981 Temperature dependence of the triplet exciton yield in fission and fusion in tetracene J. Chem. Phys. 75 1166

    Article  CAS  Google Scholar 

  30. Burdett J J and Bardeen C J 2013 The dynamics of singlet fission in crystalline tetracene and covalent analogs Acc. Chem. Res. 46 1312

    Article  CAS  Google Scholar 

  31. Grumstrup E M, Johnson J C and Damrauer N H 2010 Enhanced triplet formation in polycrystalline tetracene films by femtosecond optical-pulse shaping Phys. Rev. Lett. 105 257403

    Article  Google Scholar 

  32. Tayebjee M J Y, Clady R G C R and Schmidt T W 2013 The exciton dynamics in tetracene thin films Phys. Chem. Chem. Phys. 15 14797

    Article  CAS  Google Scholar 

  33. Swenberg C E and Stacy W T 1968 Bimolecular radiationless transitions in crystalline tetracene Chem. Phys. Lett. 2 327

    Article  CAS  Google Scholar 

  34. Peter G and Bässler H 1980 Fluorescence and energy transfer in disordered solid tetracene Chem. Phys. 49 9

    Article  CAS  Google Scholar 

  35. Reichwagen J, Hopf H, Del Guerzo A, Desvergne J-P and Bouas-Laurent H 2004 Photodimers of a soluble tetracene derivative. Excimer fluorescence from the head-to-head isomer Org. Lett. 6 1899

    Article  CAS  Google Scholar 

  36. Iannone M A and Scott G W 1990 Low temperature emission spectra of trapped tetracene pairs from ditetracene Chem. Phys. Lett. 171 569

    Article  CAS  Google Scholar 

  37. Liu H, Nichols V M, Shen L, Jahansouz S, Chen Y, Hanson K M, Bardeen C J and Li X 2015 Synthesis and photophysical properties of a “face-to-face” stacked tetracene dimer Phys. Chem. Chem. Phys. 17 6523

    Article  CAS  Google Scholar 

  38. Lim S-H, Bjorklund T G, Spano F C and Bardeen C J 2004 Exciton delocalization and superradiance in tetracene thin films and nanoaggregates Phys. Rev. Lett. 92 107402

    Article  Google Scholar 

  39. Robertson J M, Sinclair V C and Trotter J 1961 The crystal and molecular structure of tetracene Acta Cryst. 14 697

    Article  CAS  Google Scholar 

  40. Beljonne D, Yamagata H, Brédas J L, Spano F C and Olivier Y 2013 Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene Phys. Rev. Lett. 110 226402

    Article  CAS  Google Scholar 

  41. Greyson E C, Vura-Weis J, Michl J and Ratner M A 2010 Maximizing singlet fission in organic dimers: Theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer J. Phys. Chem. B 114 14168

    Article  CAS  Google Scholar 

  42. Greyson E C, Stepp B R, Chen X, Schwerin A F, Paci I, Smith M B, Akdag A, Johnson J C, Nozik A J, Michl J and Ratner M A 2010 Singlet Exciton Fission for Solar Cell Applications: Energy Aspects of Interchromophore Coupling J. Phys. Chem. B 114 14223

    Article  CAS  Google Scholar 

  43. Hestand N J and Spano F C 2017 Molecular aggregate photophysics beyond the Kasha model: Novel design principles for organic materials Acc. Chem. Res. 50 341

    Article  CAS  Google Scholar 

  44. Murov S L, Carmichael I and Hug G L 1993 In Handbook of Photochemistry (New York: Marcel Dekker)

    Google Scholar 

  45. Aggarwal N and Patnaik A 2015 A new class of nitroanilinic dimer, the PNA O-dimer: Electronic structure and emission characteristics of O-dimeric aggregates J. Phys. Chem. A 119 8388

  46. Yamagata H, Norton J, Hontz E, Olivier Y, Beljonne D, Brédas J L, Silbey R J and Spano F C 2011 The nature of singlet excitons in oligoacene molecular crystals J. Chem. Phys. 134 204703

    Article  CAS  Google Scholar 

  47. Basu S 1964 In Advances in Quantum Chemistry Vol. 1 Per-Olov Löwdin (Ed.) (New York and London: Academic Press) p. 145

  48. Groff R P, Avakian P and Merrifield R E 1970 Coexistence of exciton fission and fusion in tetracene crystals Phys. Rev. B 1 815

    Article  Google Scholar 

  49. Johnson R C and Merrifield R E 1970 Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals Phys. Rev. B 1 896

    Article  Google Scholar 

  50. Kepler R G, Caris J C, Avakian P and Abramson E 1963 Triplet excitons and delayed fluorescence in anthracene crystals Phys. Rev. Lett. 10 400

    Article  CAS  Google Scholar 

  51. Ern V, Avakian P and Merrifield R E 1966 Diffusion of triplet excitons in anthracene crystals Phys. Rev. 148 862

    Article  CAS  Google Scholar 

  52. Hall J L, Jennings D A and McClintock R M 1963 Study of anthracene fluorescence excited by the ruby giant-pulse laser Phys. Rev. Lett. 11 364

    Article  CAS  Google Scholar 

  53. Hilborn R C 1982 Einstein coefficients, cross sections, f values, dipole moments, and all that Am. J. Phys. 50 982

    Article  CAS  Google Scholar 

  54. Langhals H, Karolin J and Johansson L B-Å 1998 Spectroscopic properties of new and convenient standards for measuring fluorescence quantum yields J. Chem. Soc. Faraday Trans. 94 2919

    Article  CAS  Google Scholar 

  55. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M J, Heyd J, Brothers E N, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J Gaussian, Inc.: Wallingford CT USA 2009

  56. Zhao Y and Truhlar D G 2007 The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Acc. 120 215

    Article  Google Scholar 

  57. Sutton C, Sears J S, Coropceanu V and Brédas J-L 2013 Understanding the density functional dependence of DFT-calculated electronic couplings in organic semiconductors J. Phys. Chem. Lett. 4 919

    Article  CAS  Google Scholar 

  58. Li R, Zheng J and Truhlar D G 2010 Density functional approximations for charge transfer excitations with intermediate spatial overlap Phys. Chem. Chem. Phys. 12 12697

    Article  CAS  Google Scholar 

  59. Sinnokrot M O, Valeev E F and Sherrill C D 2002 Estimates of the ab initio limit for \(\uppi {-}\uppi \) interactions: The benzene dimer J. Am. Chem. Soc. 124 10887

    Article  CAS  Google Scholar 

  60. Lu T and Chen F 2012 Multiwfn: A multifunctional wavefunction analyzer J. Comput. Chem. 33 580

    Article  Google Scholar 

  61. Le Bahers T, Adamo C and Ciofini I 2011 A qualitative index of spatial extent in charge-transfer excitations J. Chem. Theory Comput. 7 2498

    Article  Google Scholar 

  62. Ciofini I, Le Bahers T, Adamo C, Odobel F and Jacquemin D 2012 Through-space charge transfer in rod-like molecules: Lessons from theory J. Phys. Chem. C 116 11946

    Article  CAS  Google Scholar 

  63. Pensack R D, Tilley A J, Parkin S R, Lee T S, Payne M M, Gao D, Jahnke A A, Oblinsky D G, Li P-F, Anthony J E, Seferos D S and Scholes G D 2015 Exciton delocalization drives rapid singlet fission in nanoparticles of acene derivatives J. Am. Chem. Soc. 137 6790

    Article  CAS  Google Scholar 

  64. Johnson J C, Nozik A J and Michl J 2013 The role of chromophore coupling in singlet fission Acc. Chem. Res. 46 1290

    Article  CAS  Google Scholar 

  65. Busby E, Berkelbach T C, Kumar B, Chernikov A, Zhong Y, Hlaing H, Zhu X Y, Heinz T F, Hybertsen M S, Sfeir M Y, Reichman D R, Nuckolls C and Yaffe O 2014 Multiphonon relaxation slows singlet fission in crystalline hexacene J. Am. Chem. Soc. 136 10654

    Article  CAS  Google Scholar 

  66. Smith M B and Michl J 2010 Singlet fission Chem. Rev. 110 6891

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N. A. thanks CSIR, New Delhi, for a Research Fellowship. P. G. Senapathy centre for computing resources, Sophisticated Analytical Instrumental Facility (SAIF) and Department of Chemical Engineering, IIT-Madras, are gratefully acknowledged for providing excellent Computing, TCSPC and HRSEM facilities. Grateful thanks are due to Dr. Soumya, Laser Flash Photolysis Laboratory at IIT-Madras for carrying out the nanosecond Flash Photolysis experiments. The authors thank CSIR, New Delhi, India, Grant no. 01(2830)/15/EMR-II for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Patnaik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2304 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, N., Patnaik, A. Dimeric conformation sensitive electronic excited states of tetracene congeners and their unconventional non-fluorescent behaviour. J Chem Sci 131, 52 (2019). https://doi.org/10.1007/s12039-019-1626-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1626-5

Keywords

Navigation