Skip to main content
Log in

Characterization of the High-Strength Mg–3Nd–0.5Zn Alloy Prepared by Thermomechanical Processing

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Magnesium alloys based on Nd and Zn are promising materials for both aviation industry and medical applications. Superior mechanical properties of these materials can be achieved by thermomechanical processing such as extrusion or rolling and by aging treatment, which can significantly strengthen the alloy. The question remains especially about the connection of texture strength created in the alloys based on the specific conditions of preparation. This work focuses on the Mg–3Nd–0.5Zn magnesium alloy prepared by hot extrusion of the as-cast state at two different temperatures combined with heat pre-treatment. Extrusion ratio of 16 and rate of 0.2 mm/s at 350 and 400 °C were selected for material preparation. The structures of prepared materials were studied by scanning electron microscopy and transmission electron microscopy. The effect of microstructure on mechanical properties was evaluated. Obtained results revealed the strong effect of thermal pre-treatment on final microstructure and mechanical properties of extruded materials. The Hall–Petch relation between grain size and tensile yield strength has been suggested in this paper based on the literature review and presented data. The observed behavior strongly supports the fact that the Hall–Petch of extruded Mg–3Nd–0.5Zn alloys with different texture intensities cannot be clearly estimated and predicted. In addition, Hall–Petch relations presented in literature can be sufficiently obtained only for fraction of the Mg–3Nd–0.5Zn alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Wu, R.S. Chen, W. Ke, Mater. Des. 58, 324 (2014)

    Article  Google Scholar 

  2. J. Yang, L.D. Wang, L.M. Wang, H.J. Zhang, J. Alloys Compd. 459, 274 (2008)

    Article  Google Scholar 

  3. T. Rzychoń, A. Kielbus, J. Achiev. Mater. Manuf. Eng. 21, 31 (2007)

    Google Scholar 

  4. X.B. Zhang, G.Y. Yuan, J.L. Niu, P.H. Fu, W.J. Ding, J. Mech. Behav. Biomed. Mater. 9, 153 (2012)

    Article  Google Scholar 

  5. L.N. Zhang, Z.T. Hou, X. Ye, Z.B. Xu, X.L. Bai, P. Shang, Front. Mater. Sci. 7, 227 (2013)

    Google Scholar 

  6. J. Kubásek, D. Vojtěch, Trans. Nonferrous Met. Soc. China 23, 1215 (2013)

    Article  Google Scholar 

  7. X.B. Zhang, G.Y. Yuan, L. Mao, J.L. Niu, P.H. Fu, W.J. Ding. J. Mech. Behav. Biomed. Mater. 7, 77 (2012)

    Article  Google Scholar 

  8. V. Gärtnerová, Z. Trojanová, A. Jäger, P. Palček, J. Alloys Compd. 378, 180 (2004)

    Article  Google Scholar 

  9. P. Fu, L. Peng, H. Jiang, L. Ma, C. Zhai, Mater. Sci. Eng., A 496, 177 (2008)

    Article  Google Scholar 

  10. J. Kubásek, D. Dvorský, M. Čavojský, D. Vojtěch, N. Beronská, M. Fousová, J. Mater. Sci. Technol. 33, 652 (2017)

    Article  Google Scholar 

  11. N. Birbilis, M.A. Easton, A.D. Sudholz, S.M. Zhu, M.A. Gibson, Corros. Sci. 51, 683 (2009)

    Article  Google Scholar 

  12. C.Y. Su, D.J. Li, T. Ying, L.P. Zhou, L. Li, X.Q. Zeng, J. Alloys Compd. 685, 114 (2016)

    Article  Google Scholar 

  13. T.J. Pike, B. Noble, J. Less-Common Met. 30, 63 (1973)

    Article  Google Scholar 

  14. L. Ma, R.K. Mishra, M.P. Balogh, L.M. Peng, A.A. Luo, A.K. Sachdev, W.J. Ding, Mater. Sci. Eng., A 543, 12 (2012)

    Article  Google Scholar 

  15. J.F. Nie, B.C. Muddle, Acta Mater. 48, 1691 (2000)

    Article  Google Scholar 

  16. A. Sanaty-Zadeh, A.A. Luo, D.S. Stone, Acta Mater. 94, 294 (2015)

    Article  Google Scholar 

  17. B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.F. Zheng, T.F. Xi, Acta Metall. Sin. (Engl. Lett.) 31, 351 (2018)

    Article  Google Scholar 

  18. P.H. Fu, L.M. Peng, H.Y. Jiang, J.W. Chang, C.Q. Zhai, Mater. Sci. Eng., A 486, 183 (2008)

    Article  Google Scholar 

  19. X.W. Zheng, J. Dong, Y.Z. Xiang, J.W. Chang, F.H. Wang, L. Jin, Y.X. Wang, W.J. Ding, Mater. Des. 31, 1417 (2010)

    Article  Google Scholar 

  20. H.Y. Yue, P.H. Fu, Z.M. Li, L.M. Peng, Mater. Sci. Eng., A 673, 458 (2016)

    Article  Google Scholar 

  21. Z.M. Li, A.A. Luo, Q.G. Wang, L.M. Peng, P.H. Fu, G.H. Wu, Mater. Sci. Eng., A 564, 450 (2013)

    Article  Google Scholar 

  22. L.M. Peng, P.H. Fu, Z.M. Li, H.Y. Yue, D.Y. Li, Y.X. Wang, Mater. Sci. Eng., A 611, 170 (2014)

    Article  Google Scholar 

  23. X.B. Zhang, Y.J. Xue, Z.Z. Wang, Trans. Nonferrous Met. Soc. China 22, 2343 (2012)

    Article  Google Scholar 

  24. J.L. Li, L.L. Tan, P. Wan, X.M. Yu, K. Yang, Mater. Sci. Eng., C 49, 422 (2015)

    Article  Google Scholar 

  25. L.B. Tong, M.Y. Zheng, L.R. Cheng, S. Kamado, H.J. Zhang, Mater. Sci. Eng., A 569, 48 (2013)

    Article  Google Scholar 

  26. L. Ma, R.K. Mishra, L.M. Peng, A.A. Luo, W.J. Ding, A.K. Sachdev, Mater. Sci. Eng., A 529, 151 (2011)

    Article  Google Scholar 

  27. X.B. Zhang, Z.Z. Wang, G.Y. Yuan, Y.J. Xue, Mater. Sci. Eng., B 177, 1113 (2012)

    Article  Google Scholar 

  28. D.L. Yin, J.T. Wang, J.Q. Liu, X. Zhao, J. Alloys Compd. 478, 789 (2009)

    Article  Google Scholar 

  29. Y.P. Wu, X.M. Zhang, Y.L. Deng, C.P. Tang, Y.Y. Zhong, J. Mater. Sci. Eng. A 644, 152 (2015)

    Article  Google Scholar 

  30. D.S. Gandel, M.A. Easton, M.A. Gibson, T. Abbott, N. Birbilis, Corros. Sci. 81, 27 (2014)

    Article  Google Scholar 

  31. J. Wang, L.G. Wang, S.K. Guan, S.J. Zhu, C.X. Ren, S.S. Hou, J. Mater. Sci. Mater. Med. 21, 2001 (2010)

    Article  Google Scholar 

  32. Q. Wu, S.J. Zhu, L.G. Wang, Q. Liu, G.C. Yue, J. Wang, S.K. Guan, J. Mech. Behav. Biomed. Mater. 8, 1 (2012)

    Article  Google Scholar 

  33. X.B. Zhang, G.Y. Yuan, Z.Z. Wang, Mater. Lett. 74, 128 (2012)

    Article  Google Scholar 

  34. P.A. Nuttall, T.J. Pike, B. Noble, Metallography 13, 3 (1980)

    Article  Google Scholar 

  35. N. Stanford, D. Atwell, A. Beer, C. Davies, M.R. Barnett, Scripta Mater. 59, 772 (2008)

    Article  Google Scholar 

  36. N. Stanford, M.R. Barnett, Mater. Sci. Eng., A 496, 399 (2008)

    Article  Google Scholar 

  37. N. Stanford, Mater. Sci. Eng., A 527, 2669 (2010)

    Article  Google Scholar 

  38. L.M. Peng, P.H Fu, Z.M. Li, Y.X. Wang, H.Y. Jiang. J. Mater. Sci. 49, 7105 (2014)

    Article  Google Scholar 

  39. Z.M. Li, P.H. Fu, L.M. Peng, Y.X. Wang, H.Y. Jiang, G.H. Wu, Mater. Sci. Eng., A 579, 170 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the project Advanced magnesium alloys with tailored corrosion, biological and mechanical properties (No. GA16-08963S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Kubásek.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubásek, J., Dvorský, D., Veselý, J. et al. Characterization of the High-Strength Mg–3Nd–0.5Zn Alloy Prepared by Thermomechanical Processing. Acta Metall. Sin. (Engl. Lett.) 32, 321–331 (2019). https://doi.org/10.1007/s40195-018-0765-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0765-x

Keywords

Navigation