Skip to main content

Advertisement

Log in

Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders

  • Clinical Genetics (D Finegold, Section Editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review focuses on advances made in the past 3 years with regards to understanding the mitochondrial fatty acid oxidation (FAO) pathway, the pathophysiological ramifications of genetic lesions in FAO enzymes, and emerging therapies for FAO disorders.

Recent Findings

FAO has now been recognized to play a key energetic role in pulmonary surfactant synthesis, T-cell differentiation and memory, and the response of the proximal tubule to kidney injury. Patients with FAO disorders may face defects in these cellular systems as they age. Aspirin, statins, and nutritional supplements modulate the rate of FAO under normal conditions and could be risk factors for triggering symptoms in patients with FAO disorders. Patients have been identified with mutations in the ACAD9 and ECHS1 genes, which may represent new FAO disorders. New interventions for long-chain FAODs are in clinical trials. Finally, post-translational modifications that regulate fatty acid oxidation protein activities have been characterized that represent important new therapeutic targets.

Summary

Recent research has led to a deeper understanding of FAO. New therapeutic avenues are being pursued that may ultimately cause a paradigm shift for patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Yew Tan C, Virtue S, Murfitt S, Roberts LD, Phua YH, Dale M, et al. Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Sci Rep. 2015;5:18366. doi:10.1038/srep18366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spiekerkoetter U, Bastin J, Gillingham M, Morris A, Wijburg F, Wilcken B. Current issues regarding treatment of mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis. 2010;33(5):555–61. doi:10.1007/s10545-010-9188-1.

    Article  CAS  PubMed  Google Scholar 

  3. Houten SM, Violante S, Ventura FV, Wanders RJ. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu Rev Physiol. 2016;78:23–44. doi:10.1146/annurev-physiol-021115-105045.

    Article  CAS  PubMed  Google Scholar 

  4. Vishwanath VA. Fatty acid beta-oxidation disorders: a brief review. Ann Neurosci. 2016;23(1):51–5. doi:10.1159/000443556.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schiff M, Mohsen AW, Karunanidhi A, McCracken E, Yeasted R, Vockley J. Molecular and cellular pathology of very-long-chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab. 2013;109(1):21–7. doi:10.1016/j.ymgme.2013.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fletcher AL, Pennesi ME, Harding CO, Weleber RG, Gillingham MB. Observations regarding retinopathy in mitochondrial trifunctional protein deficiencies. Mol Genet Metab. 2012;106(1):18–24. doi:10.1016/j.ymgme.2012.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guerra C, Koza RA, Walsh K, Kurtz DM, Wood PA, Kozak LP. Abnormal nonshivering thermogenesis in mice with inherited defects of fatty acid oxidation. J Clin Invest. 1998;102(9):1724–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pascual F, Coleman RA. Fuel availability and fate in cardiac metabolism: a tale of two substrates. Biochim Biophys Acta. 2016;1860(10):1425–33. doi:10.1016/j.bbalip.2016.03.014.

    Article  Google Scholar 

  9. Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4(1):177–97. doi:10.1002/cphy.c130024.

    Article  PubMed  PubMed Central  Google Scholar 

  10. van Hall G. The physiological regulation of skeletal muscle fatty acid supply and oxidation during moderate-intensity exercise. Sports Med. 2015;45(Suppl 1):S23–32. doi:10.1007/s40279-015-0394-8.

    Article  PubMed  Google Scholar 

  11. Goetzman ES, Alcorn JF, Bharathi SS, Uppala R, McHugh KJ, Kosmider B, et al. Long-chain acyl-CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction. J Biol Chem. 2014;289(15):10668–79. doi:10.1074/jbc.M113.540260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiaranunt P, Ferrara JL, Byersdorfer CA. Rethinking the paradigm: how comparative studies on fatty acid oxidation inform our understanding of T cell metabolism. Mol Immunol. 2015;68(2 Pt C):564–74. doi:10.1016/j.molimm.2015.07.023.

    Article  CAS  PubMed  Google Scholar 

  13. Hackl A, Mehler K, Gottschalk I, Vierzig A, Eydam M, Hauke J, et al. Disorders of fatty acid oxidation and autosomal recessive polycystic kidney disease-different clinical entities and comparable perinatal renal abnormalities. Pediatr Nephrol. 2017;32(5):791–800. doi:10.1007/s00467-016-3556-5.

    Article  PubMed  Google Scholar 

  14. Stadler K, Goldberg IJ, Susztak K. The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr Diab Rep. 2015;15(7):40. doi:10.1007/s11892-015-0611-8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. DiMauro S, DiMauro PM. Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science. 1973;182(4115):929–31.

    Article  CAS  PubMed  Google Scholar 

  16. Otsubo C, Bharathi S, Uppala R, Ilkayeva OR, Wang D, McHugh K, et al. Long-chain acylcarnitines reduce lung function by inhibiting pulmonary surfactant. J Biol Chem. 2015; doi:10.1074/jbc.M115.655837.

  17. Chegary M, Brinke H, Ruiter JP, Wijburg FA, Stoll MS, Minkler PE, et al. Mitochondrial long chain fatty acid beta-oxidation in man and mouse. Biochim Biophys Acta. 2009;1791(8):806–15. doi:10.1016/j.bbalip.2009.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lundy CT, Shield JP, Kvittingen EA, Vinorum OJ, Trimble ER, Morris AA. Acute respiratory distress syndrome in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies. J Inherit Metab Dis. 2003;26(6):537–41.

    Article  CAS  PubMed  Google Scholar 

  19. Gentili A, Iannella E, Masciopinto F, Latrofa ME, Giuntoli L, Baroncini S. Rhabdomyolysis and respiratory failure: rare presentation of carnitine palmityl-transferase II deficiency. Minerva Anestesiol. 2008;74(5):205–8.

    CAS  PubMed  Google Scholar 

  20. Le Hir M, Dubach UC. Peroxisomal and mitochondrial beta-oxidation in the rat kidney: distribution of fatty acyl-coenzyme A oxidase and 3-hydroxyacyl-coenzyme A dehydrogenase activities along the nephron. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 1982;30(5):441–4. doi:10.1177/30.5.7200500.

    Article  Google Scholar 

  21. Brooks C, Wei Q, Cho SG, Dong Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest. 2009;119(5):1275–85. doi:10.1172/JCI37829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meir K, Fellig Y, Meiner V, Korman SH, Shaag A, Nadjari M, et al. Severe infantile carnitine palmitoyltransferase II deficiency in 19-week fetal sibs. Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society. 2009;12(6):481–6. doi:10.2350/08-10-0548.1.

    Article  Google Scholar 

  23. Giuliani E, Coppi F, Bertolotti V, Gorlato G, Zavatta M, Barbieri A. Critical illness in energy metabolism genetic disorder: rhabdomyolysis, acute kidney injury, respiratory arrest. West Indian Med J. 2013;62(8):773–5. doi:10.7727/wimj.2012.237.

    CAS  PubMed  Google Scholar 

  24. Boles RG, Buck EA, Blitzer MG, Platt MS, Cowan TM, Martin SK, et al. Retrospective biochemical screening of fatty acid oxidation disorders in postmortem livers of 418 cases of sudden death in the first year of life. J Pediatr. 1998;132(6):924–33.

    Article  CAS  PubMed  Google Scholar 

  25. • Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37–46. doi:10.1038/nm.3762. This study presents evidence linking kidney mitochondrial fatty acid oxidation to the pathogenesis of chronic kidney disease.

    Article  CAS  PubMed  Google Scholar 

  26. Adams SH, Hoppel CL, Lok KH, Zhao L, Wong SW, Minkler PE, et al. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr. 2009;139(6):1073–81. doi:10.3945/jn.108.103754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McCoin CS, Knotts TA, Ono-Moore KD, Oort PJ, Adams SH. Long-chain acylcarnitines activate cell stress and myokine release in C2C12 myotubes: calcium-dependent and -independent effects. Am J Physiol Endocrinol Metab. 2015;308(11):E990–E1000. doi:10.1152/ajpendo.00602.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rutkowsky JM, Knotts TA, Ono-Moore KD, McCoin CS, Huang S, Schneider D, et al. Acylcarnitines activate proinflammatory signaling pathways. Am J Physiol Endocrinol Metab. 2014;306(12):E1378–87. doi:10.1152/ajpendo.00656.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M, et al. The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity. 2016;44(2):406–21. doi:10.1016/j.immuni.2016.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299–303. doi:10.4049/jimmunol.1003613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Byersdorfer CA. The role of fatty acid oxidation in the metabolic reprograming of activated t-cells. Front Immunol. 2014;5:641. doi:10.3389/fimmu.2014.00641.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shekhawat PS, Matern D, Strauss AW. Fetal fatty acid oxidation disorders, their effect on maternal health and neonatal outcome: impact of expanded newborn screening on their diagnosis and management. Pediatr Res. 2005;57(5 Pt 2):78R–86R.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vockley J, Singh RH, Whiteman DA. Diagnosis and management of defects of mitochondrial beta-oxidation. Curr Opin Clin Nutr Metab Care. 2002;5(6):601–9. doi:10.1097/01.mco.0000038807.16540.9b.

    Article  CAS  PubMed  Google Scholar 

  34. Cecatto C, Godoy Kdos S, da Silva JC, Amaral AU, Wajner M. Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle. Toxicology in vitro : an international journal published in association with BIBRA. 2016;36:1–9. doi:10.1016/j.tiv.2016.06.007.

    Article  CAS  Google Scholar 

  35. Amaral AU, Cecatto C, da Silva JC, Wajner A, Godoy Kdos S, Ribeiro RT, et al. cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: possible implications for the pathogenesis of MCAD deficiency. Biochim Biophys Acta. 2016;1857(9):1363–72. doi:10.1016/j.bbabio.2016.05.007.

    Article  CAS  PubMed  Google Scholar 

  36. Hoffmann L, Seibt A, Herebian D, Spiekerkoetter U. Monounsaturated 14:1n-9 and 16:1n-9 fatty acids but not 18:1n-9 induce apoptosis and necrosis in murine HL-1 cardiomyocytes. Lipids. 2014;49(1):25–37. doi:10.1007/s11745-013-3865-4.

    Article  CAS  PubMed  Google Scholar 

  37. Akoumi A, Haffar T, Mousterji M, Kiss RS, Bousette N. Palmitate mediated diacylglycerol accumulation causes endoplasmic reticulum stress, Plin2 degradation, and cell death in H9C2 cardiomyoblasts. Exp Cell Res. 2017;354(2):85–94. doi:10.1016/j.yexcr.2017.03.032.

    Article  CAS  PubMed  Google Scholar 

  38. Krizhanovskii C, Kristinsson H, Elksnis A, Wang X, Gavali H, Bergsten P, et al. EndoC-betaH1 cells display increased sensitivity to sodium palmitate when cultured in DMEM/F12 medium. Islets. 2017:e1296995. doi:10.1080/19382014.2017.1296995.

  39. Natarajan SK, Stringham BA, Mohr AM, Wehrkamp CJ, Lu S, Phillippi MA, et al. FoxO3 increases miR-34a to cause palmitate-induced cholangiocyte lipoapoptosis. J Lipid Res. 2017; doi:10.1194/jlr.M071357.

  40. Kwon B, Querfurth HW. Palmitate activates mTOR/p70S6K through AMPK inhibition and hypophosphorylation of raptor in skeletal muscle cells: reversal by oleate is similar to metformin. Biochimie. 2015;118:141–50. doi:10.1016/j.biochi.2015.09.006.

    Article  CAS  PubMed  Google Scholar 

  41. Haffar T, Berube-Simard F, Bousette N. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes. Biochem Biophys Res Commun. 2015;468(1–2):73–8. doi:10.1016/j.bbrc.2015.10.162.

    Article  CAS  Google Scholar 

  42. Nasser M, Javaheri H, Fedorowicz Z, Noorani Z. Carnitine supplementation for inborn errors of metabolism. Cochrane Database Syst Rev. 2012;2:CD006659. doi:10.1002/14651858.CD006659.pub3.

    Google Scholar 

  43. • Liepinsh E, Makrecka-Kuka M, Volska K, Kuka J, Makarova E, Antone U, et al. Long-chain acylcarnitines determine ischaemia/reperfusion-induced damage in heart mitochondria. Biochem J. 2016;473(9):1191–202. doi:10.1042/BCJ20160164. This study links acylcarnitine accumulation to infarct size in the ischemic myocardium.

    Article  CAS  PubMed  Google Scholar 

  44. Liepinsh E, Makrecka-Kuka M, Makarova E, Volska K, Svalbe B, Sevostjanovs E, et al. Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance. Pharmacol Res. 2016;113(Pt B):788–95. doi:10.1016/j.phrs.2015.11.014.

    Article  CAS  PubMed  Google Scholar 

  45. Aguer C, McCoin CS, Knotts TA, Thrush AB, Ono-Moore K, McPherson R, et al. Acylcarnitines: potential implications for skeletal muscle insulin resistance. FASEB J. 2015;29(1):336–45. doi:10.1096/fj.14-255901.

    Article  CAS  PubMed  Google Scholar 

  46. Makrecka M, Kuka J, Volska K, Antone U, Sevostjanovs E, Cirule H, et al. Long-chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria. Mol Cell Biochem. 2014;395(1–2):1–10. doi:10.1007/s11010-014-2106-3.

    Article  CAS  PubMed  Google Scholar 

  47. Doi N, Tomita M, Hayashi M. Absorption enhancement effect of acylcarnitines through changes in tight junction protein in Caco-2 cell monolayers. Drug metabolism and pharmacokinetics. 2011;26(2):162–70.

    Article  CAS  PubMed  Google Scholar 

  48. Viader A, Sasaki Y, Kim S, Strickland A, Workman CS, Yang K, et al. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron. 2013;77(5):886–98. doi:10.1016/j.neuron.2013.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goni FM, Requero MA, Alonso A. Palmitoylcarnitine, a surface-active metabolite. FEBS Lett. 1996;390(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  50. Gosalakkal JA, Kamoji V. Reye syndrome and reye-like syndrome. Pediatr Neurol. 2008;39(3):198–200. doi:10.1016/j.pediatrneurol.2008.06.003.

    Article  PubMed  Google Scholar 

  51. Orlowski JP. Whatever happened to Reye’s syndrome? Did it ever really exist? Crit Care Med. 1999;27(8):1582–7.

    Article  CAS  PubMed  Google Scholar 

  52. Uppala R, Dudiak B, Beck ME, Bharathi SS, Zhang Y, Stolz DB, et al. Aspirin increases mitochondrial fatty acid oxidation. Biochem Biophys Res Commun. 2017;482(2):346–51. doi:10.1016/j.bbrc.2016.11.066.

    Article  CAS  PubMed  Google Scholar 

  53. Douglas DN, Pu CH, Lewis JT, Bhat R, Anwar-Mohamed A, Logan M, et al. Oxidative stress attenuates lipid synthesis and increases mitochondrial fatty acid oxidation in hepatoma cells infected with hepatitis C virus. J Biol Chem. 2016;291(4):1974–90. doi:10.1074/jbc.M115.674861.

    Article  CAS  PubMed  Google Scholar 

  54. Amako Y, Munakata T, Kohara M, Siddiqui A, Peers C, Harris M. Hepatitis C virus attenuates mitochondrial lipid beta-oxidation by downregulating mitochondrial trifunctional-protein expression. J Virol. 2015;89(8):4092–101. doi:10.1128/JVI.01653-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Feingold KR, Moser A, Patzek SM, Shigenaga JK, Grunfeld C. Infection decreases fatty acid oxidation and nuclear hormone receptors in the diaphragm. J Lipid Res. 2009;50(10):2055–63. doi:10.1194/jlr.M800655-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Seo JY, Cresswell P. Viperin regulates cellular lipid metabolism during human cytomegalovirus infection. PLoS Pathog. 2013;9(8):e1003497. doi:10.1371/journal.ppat.1003497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rasmussen AL, Diamond DL, McDermott JE, Gao X, Metz TO, Matzke MM, et al. Systems virology identifies a mitochondrial fatty acid oxidation enzyme, dodecenoyl coenzyme A delta isomerase, required for hepatitis C virus replication and likely pathogenesis. J Virol. 2011;85(22):11646–54. doi:10.1128/JVI.05605-11.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yamamoto T, Tanaka H, Emoto Y, Umehara T, Fukahori Y, Kuriu Y, et al. Carnitine palmitoyltransferase 2 gene polymorphism is a genetic risk factor for sudden unexpected death in infancy. Brain Dev. 2013; doi:10.1016/j.braindev.2013.07.011.

  59. Kubota M, Chida J, Hoshino H, Ozawa H, Koide A, Kashii H, et al. Thermolabile CPT II variants and low blood ATP levels are closely related to severity of acute encephalopathy in Japanese children. Brain Dev. 2012;34(1):20–7. doi:10.1016/j.braindev.2010.12.012.

    Article  PubMed  Google Scholar 

  60. Deminice R, de Castro GS, Francisco LV, da Silva LE, Cardoso JF, Frajacomo FT, et al. Creatine supplementation prevents fatty liver in rats fed choline-deficient diet: a burden of one-carbon and fatty acid metabolism. J Nutr Biochem. 2015;26(4):391–7. doi:10.1016/j.jnutbio.2014.11.014.

    Article  CAS  PubMed  Google Scholar 

  61. da Silva RP, Kelly KB, Leonard KA, Jacobs RL. Creatine reduces hepatic TG accumulation in hepatocytes by stimulating fatty acid oxidation. Biochim Biophys Acta. 2014;1841(11):1639–46. doi:10.1016/j.bbalip.2014.09.001.

    Article  PubMed  Google Scholar 

  62. Greenblatt HK, Greenblatt DJ. Meldonium (mildronate): a performance-enhancing drug? Clin Pharmacol Drug Dev. 2016;5(3):167–9. doi:10.1002/cpdd.264.

    Article  CAS  PubMed  Google Scholar 

  63. Makrecka M, Svalbe B, Volska K, Sevostjanovs E, Liepins J, Grinberga S, et al. Mildronate, the inhibitor of L-carnitine transport, induces brain mitochondrial uncoupling and protects against anoxia-reoxygenation. Eur J Pharmacol. 2014;723:55–61. doi:10.1016/j.ejphar.2013.12.006.

    Article  CAS  PubMed  Google Scholar 

  64. Zhu Y, Zhang G, Zhao J, Li D, Yan X, Liu J, et al. Efficacy and safety of mildronate for acute ischemic stroke: a randomized, double-blind, active-controlled phase II multicenter trial. Clinical drug investigation. 2013;33(10):755–60. doi:10.1007/s40261-013-0121-x.

    Article  CAS  PubMed  Google Scholar 

  65. Vilskersts R, Liepinsh E, Kuka J, Cirule H, Veveris M, Kalvinsh I, et al. Myocardial infarct size-limiting and anti-arrhythmic effects of mildronate orotate in the rat heart. Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy. 2009;23(4):281–8. doi:10.1007/s10557-009-6179-2.

    Article  CAS  Google Scholar 

  66. Jaudzems K, Kuka J, Gutsaits A, Zinovjevs K, Kalvinsh I, Liepinsh E, et al. Inhibition of carnitine acetyltransferase by mildronate, a regulator of energy metabolism. Journal of enzyme inhibition and medicinal chemistry. 2009;24(6):1269–75. doi:10.3109/14756360902829527.

    Article  CAS  PubMed  Google Scholar 

  67. Liepinsh E, Konrade I, Skapare E, Pugovics O, Grinberga S, Kuka J, et al. Mildronate treatment alters gamma-butyrobetaine and l-carnitine concentrations in healthy volunteers. J Pharm Pharmacol. 2011;63(9):1195–201. doi:10.1111/j.2042-7158.2011.01325.x.

    Article  CAS  PubMed  Google Scholar 

  68. Park HS, Jang JE, Ko MS, Woo SH, Kim BJ, Kim HS, et al. Statins increase mitochondrial and peroxisomal fatty acid oxidation in the liver and prevent non-alcoholic steatohepatitis in mice. Diabetes Metab J. 2016;40(5):376–85. doi:10.4093/dmj.2016.40.5.376.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang J, Zhang W, Zou D, Chen G, Wan T, Zhang M, et al. Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochem Biophys Res Commun. 2002;297(4):1033–42.

    Article  CAS  PubMed  Google Scholar 

  70. Ensenauer R, He M, Willard JM, Goetzman ES, Corydon TJ, Vandahl BB, et al. Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids. J Biol Chem. 2005;280(37):32309–16. doi:10.1074/jbc.M504460200.

    Article  CAS  PubMed  Google Scholar 

  71. He M, Rutledge SL, Kelly DR, Palmer CA, Murdoch G, Majumder N, et al. A new genetic disorder in mitochondrial fatty acid beta-oxidation: ACAD9 deficiency. Am J Hum Genet. 2007;81(1):87–103. doi:10.1086/519219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. • Nouws J, Nijtmans L, Houten SM, van den Brand M, Huynen M, Venselaar H, et al. Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab. 2010;12(3):283–94. doi:10.1016/j.cmet.2010.08.002. This study discovered a novel role for ACAD9 in regulating the assembly of electron transport chain complex I.

    Article  CAS  PubMed  Google Scholar 

  73. Dewulf JP, Barrea C, Vincent MF, De Laet C, Van Coster R, Seneca S, et al. Evidence of a wide spectrum of cardiac involvement due to ACAD9 mutations: report on nine patients. Mol Genet Metab. 2016;118(3):185–9. doi:10.1016/j.ymgme.2016.05.005.

    Article  CAS  PubMed  Google Scholar 

  74. Schiff M, Haberberger B, Xia C, Mohsen A-W, Goetzman ES, Wang Y, et al. Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency. Hum Mol Genet. 2015;24(11):3238–47. doi:10.1093/hmg/ddv074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lagoutte-Renosi J, Segalas-Milazzo I, Crahes M, Renosi F, Menu-Bouaouiche L, Torre S, et al. Lethal neonatal progression of fetal cardiomegaly associated to ACAD9 deficiency. JIMD reports. 2015; doi:10.1007/8904_2015_499.

  76. Haack TB, Danhauser K, Haberberger B, Hoser J, Strecker V, Boehm D, et al. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet. 2010;42(12):1131–4. doi:10.1038/ng.706.

    Article  CAS  PubMed  Google Scholar 

  77. • Peters H, Buck N, Wanders R, Ruiter J, Waterham H, Koster J, et al. ECHS1 mutations in Leigh disease: a new inborn error of metabolism affecting valine metabolism. Brain. 2014;137(Pt 11):2903–8. doi:10.1093/brain/awu216. This study describes the first patients with ECHS1 deficiency.

    Article  PubMed  Google Scholar 

  78. Haack TB, Jackson CB, Murayama K, Kremer LS, Schaller A, Kotzaeridou U, et al. Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement. Ann Clin Transl Neurol. 2015;2(5):492–509. doi:10.1002/acn3.189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. He M, Pei Z, Mohsen AW, Watkins P, Murdoch G, Van Veldhoven PP, et al. Identification and characterization of new long chain acyl-CoA dehydrogenases. Mol Genet Metab. 2011;102(4):418–29. doi:10.1016/j.ymgme.2010.12.005.

    Article  CAS  PubMed  Google Scholar 

  80. Bloom K, Mohsen AW, Karunanidhi A, El Demellawy D, Reyes-Mugica M, Wang Y, et al. Investigating the link of ACAD10 deficiency to type 2 diabetes mellitus. J Inherit Metab Dis. 2017; doi:10.1007/s10545-017-0013-y.

  81. Bian L, Hanson RL, Muller YL, Ma L, Investigators M, Kobes S, et al. Variants in ACAD10 are associated with type 2 diabetes, insulin resistance and lipid oxidation in Pima Indians. Diabetologia. 2010;53(7):1349–53. doi:10.1007/s00125-010-1695-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu L, Zhou B, Oshiro-Rapley N, Li M, Paulo JA, Webster CM, et al. An ancient, unified mechanism for metformin growth inhibition in C. elegans and cancer. Cell. 2016;167(7):1705–18 e13. doi:10.1016/j.cell.2016.11.055.

    Article  CAS  PubMed  Google Scholar 

  83. van Eerd DC, Brusse IA, Adriaens VF, Mankowski RT, Praet SF, Michels M, et al. Management of an LCHADD patient during pregnancy and high intensity exercise. JIMD reports. 2017;32:95–100. doi:10.1007/8904_2016_561.

    Article  PubMed  Google Scholar 

  84. Behrend AM, Harding CO, Shoemaker JD, Matern D, Sahn DJ, Elliot DL, et al. Substrate oxidation and cardiac performance during exercise in disorders of long chain fatty acid oxidation. Mol Genet Metab. 2012;105(1):110–5. doi:10.1016/j.ymgme.2011.09.030.

    Article  CAS  PubMed  Google Scholar 

  85. Gillingham MB, Scott B, Elliott D, Harding CO. Metabolic control during exercise with and without medium-chain triglycerides (MCT) in children with long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency. Mol Genet Metab. 2006;89(1–2):58–63. doi:10.1016/j.ymgme.2006.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li H, Fukuda S, Hasegawa Y, Kobayashi H, Purevsuren J, Mushimoto Y, et al. Effect of heat stress and bezafibrate on mitochondrial beta-oxidation: comparison between cultured cells from normal and mitochondrial fatty acid oxidation disorder children using in vitro probe acylcarnitine profiling assay. Brain Dev. 2010;32(5):362–70. doi:10.1016/j.braindev.2009.06.001.

    Article  PubMed  Google Scholar 

  87. Orngreen MC, Vissing J, Laforet P. No effect of bezafibrate in patients with CPTII and VLCAD deficiencies. J Inherit Metab Dis. 2015;38(2):373–4. doi:10.1007/s10545-014-9779-3.

    Article  PubMed  Google Scholar 

  88. Orngreen MC, Madsen KL, Preisler N, Andersen G, Vissing J, Laforet P. Bezafibrate in skeletal muscle fatty acid oxidation disorders: a randomized clinical trial. Neurology. 2014;82(7):607–13. doi:10.1212/WNL.0000000000000118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roe CR, Sweetman L, Roe DS, David F, Brunengraber H. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest. 2002;110(2):259–69. doi:10.1172/JCI15311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vockley J, Burton B, Berry GT, Longo N, Phillips J, Sanchez-Valle A, et al. UX007 for the treatment of long chain-fatty acid oxidation disorders: safety and efficacy in children and adults following 24weeks of treatment. Mol Genet Metab. 2017;120(4):370–7. doi:10.1016/j.ymgme.2017.02.005.

    Article  CAS  PubMed  Google Scholar 

  91. Vockley J, Marsden D, McCracken E, DeWard S, Barone A, Hsu K, et al. Long-term major clinical outcomes in patients with long chain fatty acid oxidation disorders before and after transition to triheptanoin treatment—a retrospective chart review. Mol Genet Metab. 2015;116(1–2):53–60. doi:10.1016/j.ymgme.2015.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Palir N, Ruiter JP, Wanders RJ, Houtkooper RH. Identification of enzymes involved in oxidation of phenylbutyrate. J Lipid Res. 2017; doi:10.1194/jlr.M075317.

  93. Kormanik K, Kang H, Cuebas D, Vockley J, Mohsen AW. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate. Mol Genet Metab. 2012;107(4):684–9. doi:10.1016/j.ymgme.2012.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cullis PR, Hope MJ. Lipid nanoparticle systems for enabling gene therapies. Molecular therapy : the journal of the American Society of Gene Therapy. 2017; doi:10.1016/j.ymthe.2017.03.013.

  95. Keeler AM, ElMallah MK, Flotte TR. Gene therapy 2017: progress and future directions. Clin Transl Sci. 2017; doi:10.1111/cts.12466.

  96. Zhang Y, Bharathi SS, Rardin MJ, Uppala R, Verdin E, Gibson BW, et al. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase. PLoS One. 2015;10(3):e0122297. doi:10.1371/journal.pone.0122297.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 2013;18(6):920–33. doi:10.1016/j.cmet.2013.11.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bharathi SS, Zhang Y, Mohsen AW, Uppala R, Balasubramani M, Schreiber E, et al. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J Biol Chem. 2013;288(47):33837–47. doi:10.1074/jbc.M113.510354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010;464(7285):121–U37. doi:10.1038/nature08778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang Y, Mohsen AW, Mihalik SJ, Goetzman ES, Vockley J. Evidence for physical association of mitochondrial fatty acid oxidation and oxidative phosphorylation complexes. J Biol Chem. 2010;285(39):29834–41. doi:10.1074/jbc.M110.139493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Doulias PT, Tenopoulou M, Greene JL, Raju K, Ischiropoulos H. Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci Signal. 2013;6(256):rs1. doi:10.1126/scisignal.2003252.

    Article  PubMed  PubMed Central  Google Scholar 

  102. • Tenopoulou M, Chen J, Bastin J, Bennett MJ, Ischiropoulos H, Doulias PT. Strategies for correcting very long chain acyl-CoA dehydrogenase deficiency. J Biol Chem. 2015;290(16):10486–94. doi:10.1074/jbc.M114.635102. This study demonstrates manipulation of a post-translational modification as a potential new therapeutic strategy for VLCAD deficiency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Goetzman.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Clinical Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goetzman, E.S. Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders. Curr Genet Med Rep 5, 132–142 (2017). https://doi.org/10.1007/s40142-017-0125-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-017-0125-6

Keywords

Navigation